Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The HCM-causing Y235S cMyBPC mutation accelerates contractile function by altering C1 domain structure.

Biochimica et biophysica acta. Molecular basis of disease | 2019

Mutations in cardiac myosin binding protein C (cMyBPC) are a major cause of hypertrophic cardiomyopathy (HCM). In particular, a single amino acid substitution of tyrosine to serine at residue 237 in humans (residue 235 in mice) has been linked to HCM with strong disease association. Although cMyBPC truncations, deletions and insertions, and frame shift mutations have been studied, relatively little is known about the functional consequences of missense mutations in cMyBPC. In this study, we characterized the functional and structural effects of the HCM-causing Y235S mutation by performing mechanical experiments and molecular dynamics simulations (MDS). cMyBPC null mouse myocardium was virally transfected with wild-type (WT) or Y235S cMyBPC (KOY235S). We found that Y235S cMyBPC was properly expressed and incorporated into the cardiac sarcomere, suggesting that the mechanism of disease of the Y235S mutation is not haploinsufficiency or poison peptides. Mechanical experiments in detergent-skinned myocardium isolated from KOY235S hearts revealed hypercontractile behavior compared to KOWT hearts, evidenced by accelerated cross-bridge kinetics and increased Ca2+ sensitivity of force generation. In addition, MDS revealed that the Y235S mutation causes alterations in important intramolecular interactions, surface conformations, and electrostatic potential of the C1 domain of cMyBPC. Our combined in vitro and in silico data suggest that the Y235S mutation directly disrupts internal and surface properties of the C1 domain of cMyBPC, which potentially alters its ligand-binding interactions. These molecular changes may underlie the mechanism for hypercontractile cross-bridge behavior, which ultimately results in the development of cardiac hypertrophy and in vivo cardiac dysfunction.

Pubmed ID: 30611859 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NHLBI NIH HHS, United States
    Id: R01 HL114770
  • Agency: NIGMS NIH HHS, United States
    Id: T32 GM007250
  • Agency: NHLBI NIH HHS, United States
    Id: T32 HL007567
  • Agency: NCATS NIH HHS, United States
    Id: TL1 TR002549

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


FoldX (tool)

RRID:SCR_008522

A computer algorithm that provides a fast and quantitative estimation of the importance of the interactions contributing to the stability of proteins and protein complexes. The predictive power of FOLDEF has been tested on a very large set of point mutants (1088 mutants) spanning most of the structural environments found in proteins . FoldX uses a full atomic description of the structure of the proteins. The different energy terms taken into account in FoldX have been weighted using empirical data obtained from protein engineering experiments.

View all literature mentions

CUPSAT (tool)

RRID:SCR_010773

A tool to predict changes in protein stability upon point mutations.

View all literature mentions

mCSM (tool)

RRID:SCR_010776

Data analysis service to the study of missense mutations which relies on graph-based signatures.

View all literature mentions

MolProbity (tool)

RRID:SCR_014226

A structure-validation web application which provides an expert-system consultation about the accuracy of a macromolecular structure model, diagnosing local problems and enabling their correction. MolProbity works best as an active validation tool (used as soon as a model is available and during each rebuild/refine loop) and when used for protein and RNA crystal structures, but it may also work well for DNA, ligands and NMR ensembles. It produces coordinates, graphics, and numerical evaluations that integrate with either manual or automated use in systems such as PHENIX, KiNG, or Coot.

View all literature mentions

I-TASSER (tool)

RRID:SCR_014627

Web server as integrated platform for automated protein structure and function prediction. Used for protein 3D structure prediction. Resource for automated protein structure prediction and structure-based function annotation.

View all literature mentions

NAMD (tool)

RRID:SCR_014894

Parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD uses the popular molecular graphics program VMD for simulation setup and trajectory analysis, but is also file-compatible with AMBER, CHARMM, and X-PLOR.

View all literature mentions