Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A Novel Approach Based on a Weighted Interactive Network to Predict Associations of MiRNAs and Diseases.

International journal of molecular sciences | 2018

Accumulating evidence progressively indicated that microRNAs (miRNAs) play a significant role in the pathogenesis of diseases through many experimental studies; therefore, developing powerful computational models to identify potential human miRNA⁻disease associations is vital for an understanding of the disease etiology and pathogenesis. In this paper, a weighted interactive network was firstly constructed by combining known miRNA⁻disease associations, as well as the integrated similarity between diseases and the integrated similarity between miRNAs. Then, a new computational method implementing the newly weighted interactive network was developed for discovering potential miRNA⁻disease associations (WINMDA) by integrating the T most similar neighbors and the shortest path algorithm. Simulation results show that WINMDA can achieve reliable area under the receiver operating characteristics (ROC) curve (AUC) results of 0.9183 ± 0.0007 in 5-fold cross-validation, 0.9200 ± 0.0004 in 10-fold cross-validation, 0.9243 in global leave-one-out cross-validation (LOOCV), and 0.8856 in local LOOCV. Furthermore, case studies of colon neoplasms, gastric neoplasms, and prostate neoplasms based on the Human microRNA Disease Database (HMDD) database were implemented, for which 94% (colon neoplasms), 96% (gastric neoplasms), and 96% (prostate neoplasms) of the top 50 predicting miRNAs were confirmed by recent experimental reports, which also demonstrates that WINMDA can effectively uncover potential miRNA⁻disease associations.

Pubmed ID: 30597923 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


MeSH (tool)

RRID:SCR_004750

A controlled vocabulary thesaurus that consists of sets of terms naming descriptors in a hierarchical structure that permits searching at various levels of specificity. MeSH, in machine-readable form, is provided at no charge via electronic means. MeSH descriptors are arranged in both an alphabetic and a hierarchical structure. At the most general level of the hierarchical structure are very broad headings such as Anatomy or Mental Disorders. More specific headings are found at more narrow levels of the twelve-level hierarchy, such as Ankle and Conduct Disorder. There are 27,149 descriptors in 2014 MeSH. There are also over 218,000 entry terms that assist in finding the most appropriate MeSH Heading, for example, Vitamin C is an entry term to Ascorbic Acid. In addition to these headings, there are more than 219,000 headings called Supplementary Concept Records (formerly Supplementary Chemical Records) within a separate thesaurus. The MeSH thesaurus is used by NLM for indexing articles from 5,400 of the world''''s leading biomedical journals for the MEDLINE/PubMED database. It is also used for the NLM-produced database that includes cataloging of books, documents, and audiovisuals acquired by the Library. Each bibliographic reference is associated with a set of MeSH terms that describe the content of the item. Similarly, search queries use MeSH vocabulary to find items on a desired topic.

View all literature mentions

National Library of Medicine (tool)

RRID:SCR_011446

NLM collects, organizes, and makes available biomedical science information to scientists, health professionals, and the public. The Library's Web-based databases, including PubMed/Medline and MedlinePlus, are used extensively around the world. NLM conducts and supports research in biomedical communications; creates information resources for molecular biology, biotechnology, toxicology, and environmental health; and provides grant and contract support for training, medical library resources, and biomedical informatics and communications research. Celebrating its 175th anniversary in 2011, the National Library of Medicine (NLM), in Bethesda, Maryland, is a part of the National Institutes of Health, U.S. Department of Health and Human Services (HHS). Since its founding in 1836 as the library of the U.S. Army Surgeon General, NLM has played a pivotal role in translating biomedical research into practice. It is the world's largest biomedical library and the developer of electronic information services that deliver trillions of bytes of data to millions of users every day. Scientists, health professionals, and the public in the United States and around the globe search the Library's online information resources more than 1 billion times each year. The Library is open to all and has many services and resources for scientists, health professionals, historians, and the general public. NLM has over 17 million books, journals, manuscripts, audiovisuals, and other forms of medical information on its shelves, making it the largest health-science library in the world. In today's increasingly digital world, NLM carries out its mission of enabling biomedical research, supporting health care and public health, and promoting healthy behavior by: * Acquiring, organizing, and preserving the world's scholarly biomedical literature; * Providing access to biomedical and health information across the country in partnership with the 5,800-member National Network of Libraries of Medicine (NN/LM); * Serving as a leading global resource for building, curating and providing sophisticated access to molecular biology and genomic information, including those from the Human Genome Project and NIH Common Fund; * Creating high-quality information services relevant to toxicology and environmental health, health services research, and public health; * Conducting research and development on biomedical communications systems, methods, technologies, and networks and information dissemination and utilization among health professionals, patients, and the general public; * Funding advanced biomedical informatics research and serving as the primary supporter of pre- and post-doctoral research training in biomedical informatics at 18 U.S. universities.

View all literature mentions