Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Chronic stress increases pain sensitivity via activation of the rACC-BLA pathway in rats.

Experimental neurology | 2019

Exposure to chronic stress can produce maladaptive neurobiological changes in pathways associated with pain processing, which may cause stress-induced hyperalgesia (SIH). However, the underlying mechanisms still remain largely unknown. In previous studies, we have reported that the amygdala is involved in chronic forced swim (FS) stress-induced depressive-like behaviors and the exacerbation of neuropathic pain in rats, of which, the basolateral amygdala (BLA) and the central nucleus of the amygdala (CeA) are shown to play important roles in the integration of affective and sensory information including nociception. Here, using in vivo multichannel recording from rostal anterior cingulate cortex (rACC) and BLA, we found that chronic FS stress (CFSS) could increase the pain sensitivity of rats in response to low intensity innoxious stimuli (LIS) and high intensity noxious stimuli (HNS) imposed upon the hindpaw, validating the occurrence of SIH in stressed rats. Moreover, we discovered that CFSS not only induced an increased activity of rACC neuronal population but also produced an augmented field potential power (FPP) of rACC local field potential (LFP), especially in low frequency theta band as well as in high frequency low gamma band ranges, both at the baseline state and under LIS and HNS conditions. In addition, by using a cross-correlation method and a partial directed coherence (PDC) algorithm to analyze the LFP oscillating activity in rACC and BLA, we demonstrated that CFSS could substantially promote the synchronization between rACC and BLA regions, and also enhanced the neural information flow from rACC to BLA. We conclude that exposure of chronic FS stress to rats could result in an increased activity of rACC neuronal population and promote the functional connectivity and the synchronization between rACC and BLA regions, and also enhance the pain-related neural information flow from rACC to BLA, which likely underlie the pathogenesis of SIH.

Pubmed ID: 30586593 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


MATLAB (tool)

RRID:SCR_001622

Multi paradigm numerical computing environment and fourth generation programming language developed by MathWorks. Allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, Java, Fortran and Python. Used to explore and visualize ideas and collaborate across disciplines including signal and image processing, communications, control systems, and computational finance.

View all literature mentions

Chronux (tool)

RRID:SCR_005547

Open-source software package for the analysis of neural data. Chronux routines may be employed in the analysis of both point process and continuous data, ranging from preprocessing, exploratory and confirmatory analysis. The current release is implemented as a MATLAB library. Chronux offers several routines for computing spectra and coherences for both point and continuous processes. In addition, it also offers several general purpose routines that were found useful such as a routine for extracting specified segments from data, or binning spike time data with bins of a specified size. Since the data can be continuous valued, point process times, or point processes that are binned, methods that apply to all these data types are given in routines whose names end with ''''c'''' for continuous, ''''pb'''' for binned point processes, and ''''pt'''' for point process times. Thus, mtspectrumc computes the spectrum of continuous data, mtspectrumpb computes a spectrum for binned point processes, and mtspectrumpt compute spectra for data consisting of point process times. Hybrid routines are also available and similarly named - for instance coherencycpb computes the coherency between continuous and binned point process data.

View all literature mentions