2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Magnolol attenuates the inflammation and enhances phagocytosis through the activation of MAPK, NF-κB signal pathways in vitro and in vivo.

Molecular immunology | 2019

Magnolol is a natural extract and the main bioactive component from Chinese medicine-Magnolia. We speculate that it's functional action might be associated with the anti-inflammatory effects of magnolol. Herein, the main purpose was to elucidate the phagocytic immune function and anti-inflammatory activities associated. The toxicity of magnolol on U937 and LO-2 cells was assayed by MTT, flow cytometry and laser scanning confocal microscope was utilized to detect the phagocytosis effect on U937 cells, C57BL/6 mice and the follow-up hematoxylin-eosin staining methods were used to evaluate its bioactivity in vivo. The results showed that magnolol had dose dependent effects on enhancement of phagocytosis ability and significantly inhibited the NO production at the concentration range from10 to 40 μM. Furthermore, Magnolol significantly reduced the gene expression and protein release of IL-1β and TNF-α. However, the p-ERK1/2 in MAPK signaling pathway was not significantly affected by magnolol, whereas p-JNK and p-P38 were down-regulated. Magnolol also inhibited the expression of p-IκBα and p-P65 of NF-κB signaling pathways. The loss of body weight and the shorter length of colon were significantly improved in DSS-treated colitis C57BL/6 mice after the administration of magnolol. The cytokines of pro-inflammatory factors TNF-α, IL-6 and IL-1β attenuated significantly in a concentration dependent manner. The histopathological manifestations of 5-20 mg/kg after the treatment magnolol were markedly improved in the DSS-treated mice. These findings showed that magnolol exerted an anti-inflammatory effect through immunoregulatory phagocytosis, MAPK and NF-κB signaling pathways. Our results provide experimental evidence and theory basis for research on anti-inflammatory effects for magnolol as a potentially anti-inflammatory drug candidate.

Pubmed ID: 30500626 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Cell Signaling Technology (tool)

RRID:SCR_004431

Privately held company that develops and produces antibodies, ELISA kits, ChIP kits, proteomic kits, and other related reagents used to study cell signaling pathways that impact human health.

View all literature mentions

Proteintech Group (tool)

RRID:SCR_008986

Proteintech Europe Ltd is an ISO 9001:2008 certified company

View all literature mentions