Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Enhanced calcium entry via activation of NOX/PKC underlies increased vasoconstriction induced by methylglyoxal.

Biochemical and biophysical research communications | 2018

Advanced glycation end-products (AGEs) play a pivotal role in macro- and micro-vascular diabetic complications. We investigated the mechanism by which methylglyoxal (an endogenous generator of AGEs) affects vascular contractility using the isolated artery technique. Contractile responses to vasoconstrictors phenylephrine (PE), angiotensin II (Ang II), vasopressin (VP) and KCl were measured in the isolated rat aorta following one-our exposure to methylglyoxal (50-200 μM). The perfused rat kidney was employed to confirm the effect of methylglyoxal on microvessels. Methylglyoxal-induced changes in cytosolic calcium were measured in the smooth muscle layer of the aorta with the calcium-sensing fluorophore Fluo-4 AM. Methylglyoxal significantly increased maximal contraction of the rat aorta to PE, Ang II and VP. Similar results were seen in response to the depolarizing vasoconstrictor KCl in macro and micro vessels. The methylglyoxal-induced increases in aortic contraction mediated by the agonist and KCl were endothelium independent. Methylglyoxal-induced increases in KCl-dependent aortic contraction were abolished after the removal of extracellular calcium or in the presence of the calcium channel blocker nifedipine. Incubation with the antioxidant N-acetyl-l-cysteine (NAC), apocynin (a nonselective NADPH oxidase (NOX) inhibitor) or chelerythrine (a protein kinase C (PKC) inhibitor) prior to methylglyoxal pre-treatment reversed the methylglyoxal-induced increases in the rat aortic contractility. In conclusion, the formation of AGEs increases vasoconstriction of both macro- and micro-vessels by increasing the voltage-activated calcium entry in vascular smooth muscles in a NOX and PKC dependent manner.

Pubmed ID: 30404736 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


PRISM (tool)

RRID:SCR_005375

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 5,2022.Tool that predicts interactions between transcription factors and their regulated genes from binding motifs. Understanding vertebrate development requires unraveling the cis-regulatory architecture of gene regulation. PRISM provides accurate genome-wide computational predictions of transcription factor binding sites for the human and mouse genomes, and integrates the predictions with GREAT to provide functional biological context. Together, accurate computational binding site prediction and GREAT produce for each transcription factor: 1. putative binding sites, 2. putative target genes, 3. putative biological roles of the transcription factor, and 4. putative cis-regulatory elements through which the factor regulates each target in each functional role.

View all literature mentions