Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Glycoprotein M6B Interacts with TβRI to Activate TGF-β-Smad2/3 Signaling and Promote Smooth Muscle Cell Differentiation.

Stem cells (Dayton, Ohio) | 2019

Smooth muscle cells (SMCs), which form the walls of blood vessels, play an important role in vascular development and the pathogenic process of vascular remodeling. However, the molecular mechanisms governing SMC differentiation remain poorly understood. Glycoprotein M6B (GPM6B) is a four-transmembrane protein that belongs to the proteolipid protein family and is widely expressed in neurons, oligodendrocytes, and astrocytes. Previous studies have revealed that GPM6B plays a role in neuronal differentiation, myelination, and osteoblast differentiation. In the present study, we found that the GPM6B gene and protein expression levels were significantly upregulated during transforming growth factor-β1 (TGF-β1)-induced SMC differentiation. The knockdown of GPM6B resulted in the downregulation of SMC-specific marker expression and repressed the activation of Smad2/3 signaling. Moreover, GPM6B regulates SMC Differentiation by Controlling TGF-β-Smad2/3 Signaling. Furthermore, we demonstrated that similar to p-Smad2/3, GPM6B was profoundly expressed and coexpressed with SMC differentiation markers in embryonic SMCs. Moreover, GPM6B can regulate the tightness between TβRI, TβRII, or Smad2/3 by directly binding to TβRI to activate Smad2/3 signaling during SMC differentiation, and activation of TGF-β-Smad2/3 signaling also facilitate the expression of GPM6B. Taken together, these findings demonstrate that GPM6B plays a crucial role in SMC differentiation and regulates SMC differentiation through the activation of TGF-β-Smad2/3 signaling via direct interactions with TβRI. This finding indicates that GPM6B is a potential target for deriving SMCs from stem cells in cardiovascular regenerative medicine. Stem Cells 2018 Stem Cells 2019;37:190-201.

Pubmed ID: 30372567 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Quantity One 1-D Analysis Software (tool)

RRID:SCR_014280

Software used for Bio-Rad imaging systems to acquire, quantitate, and analyze a variety of data. The software allows automatic configuration of imaging systems with appropriate filters, lasers, LEDs, and other illumination sources. It also contains tools for automated analysis of tests and assays such as 1-D electrophoretic gels, western blots, and colony counts.

View all literature mentions

C3H/10T1/2 clone 8 (tool)

RRID:CVCL_0190

Cell line C3H/10T1/2 clone 8 is a Spontaneously immortalized cell line with a species of origin Mus musculus

View all literature mentions

HEK293T (tool)

RRID:CVCL_0063

Cell line HEK293T is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions