Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Mlh1 deficiency increases the risk of hematopoietic malignancy after simulated space radiation exposure.

Leukemia | 2019

Cancer-causing genome instability is a major concern during space travel due to exposure of astronauts to potent sources of high-linear energy transfer (LET) ionizing radiation. Hematopoietic stem cells (HSCs) are particularly susceptible to genotoxic stress, and accumulation of damage can lead to HSC dysfunction and oncogenesis. Our group recently demonstrated that aging human HSCs accumulate microsatellite instability coincident with loss of MLH1, a DNA Mismatch Repair (MMR) protein, which could reasonably predispose to radiation-induced HSC malignancies. Therefore, in an effort to reduce risk uncertainty for cancer development during deep space travel, we employed an Mlh1+/- mouse model to study the effects high-LET 56Fe ion space-like radiation. Irradiated Mlh1+/- mice showed a significantly higher incidence of lymphomagenesis with 56Fe ions compared to γ-rays and unirradiated mice, and malignancy correlated with increased MSI in the tumors. In addition, whole-exome sequencing analysis revealed high SNVs and INDELs in lymphomas being driven by loss of Mlh1 and frequently mutated genes had a strong correlation with human leukemias. Therefore, the data suggest that age-related MMR deficiencies could lead to HSC malignancies after space radiation, and that countermeasure strategies will be required to adequately protect the astronaut population on the journey to Mars.

Pubmed ID: 30275527 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: P30 CA043703

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


GATK (tool)

RRID:SCR_001876

A software package to analyze next-generation resequencing data. The toolkit offers a wide variety of tools, with a primary focus on variant discovery and genotyping as well as strong emphasis on data quality assurance. Its robust architecture, powerful processing engine and high-performance computing features make it capable of taking on projects of any size. This software library makes writing efficient analysis tools using next-generation sequencing data very easy, and second it's a suite of tools for working with human medical resequencing projects such as 1000 Genomes and The Cancer Genome Atlas. These tools include things like a depth of coverage analyzers, a quality score recalibrator, a SNP/indel caller and a local realigner. (entry from Genetic Analysis Software)

View all literature mentions

FastQC (tool)

RRID:SCR_014583

Quality control software that perform checks on raw sequence data coming from high throughput sequencing pipelines. This software also provides a modular set of analyses which can give a quick impression of the quality of the data prior to further analysis.

View all literature mentions

Agilent TapeStation Laptop (tool)

RRID:SCR_019547

TapeStation Laptop is used to standardize data acquisition and analysis.

View all literature mentions

B6.129-Mlh1tm1Rak/Nci (tool)

RRID:IMSR_NCIMR:01XA2

Mus musculus with name B6.129-Mlh1tm1Rak/Nci from IMSR.

View all literature mentions