Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

FOXM1 contributes to treatment failure in acute myeloid leukemia.

JCI insight | 2018

Acute myeloid leukemia (AML) patients with NPM1 mutations demonstrate a superior response to standard chemotherapy treatment. Our previous work has shown that these favorable outcomes are linked to the cytoplasmic relocalization and inactivation of FOXM1 driven by mutated NPM1. Here, we went on to confirm the important role of FOXM1 in increased chemoresistance in AML. A multiinstitution retrospective study was conducted to link FOXM1 expression to clinical outcomes in AML. We establish nuclear FOXM1 as an independent clinical predictor of chemotherapeutic resistance in intermediate-risk AML in a multivariate analysis incorporating standard clinicopathologic risk factors. Using colony assays, we show a dramatic decrease in colony size and numbers in AML cell lines with knockdown of FOXM1, suggesting an important role for FOXM1 in the clonogenic activity of AML cells. In order to further prove a potential role for FOXM1 in AML chemoresistance, we induced an FLT3-ITD-driven myeloid neoplasm in a FOXM1-overexpressing transgenic mouse model and demonstrated significantly higher residual disease after standard chemotherapy. This suggests that constitutive overexpression of FOXM1 in this model induces chemoresistance. Finally, we performed proof-of-principle experiments using a currently approved proteasome inhibitor, ixazomib, to target FOXM1 and demonstrated a therapeutic response in AML patient samples and animal models of AML that correlates with the suppression of FOXM1 and its transcriptional targets. Addition of low doses of ixazomib increases sensitization of AML cells to chemotherapy backbone drugs cytarabine and the hypomethylator 5-azacitidine. Our results underscore the importance of FOXM1 in AML progression and treatment, and they suggest that targeting it may have therapeutic benefit in combination with standard AML therapies.

Pubmed ID: 30089730 RIS Download

Associated grants

  • Agency: NCATS NIH HHS, United States
    Id: KL2 TR000107
  • Agency: NCATS NIH HHS, United States
    Id: KL2 TR002002
  • Agency: NCI NIH HHS, United States
    Id: R21 CA194608

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Thermo Fisher Scientific (tool)

RRID:SCR_008452

Commercial vendor and service provider of laboratory reagents and antibodies. Supplier of scientific instrumentation, reagents and consumables, and software services.

View all literature mentions

BD Biosciences (tool)

RRID:SCR_013311

An Antibody supplier

View all literature mentions

ATCC (tool)

RRID:SCR_001672

Global nonprofit biological resource center (BRC) and research organization that provides biological products, technical services and educational programs to private industry, government and academic organizations. Its mission is to acquire, authenticate, preserve, develop and distribute biological materials, information, technology, intellectual property and standards for the advancement and application of scientific knowledge. The primary purpose of ATCC is to use its resources and experience as a BRC to become the world leader in standard biological reference materials management, intellectual property resource management and translational research as applied to biomaterial development, standardization and certification. ATCC characterizes cell lines, bacteria, viruses, fungi and protozoa, as well as develops and evaluates assays and techniques for validating research resources and preserving and distributing biological materials to the public and private sector research communities.

View all literature mentions

Promega (tool)

RRID:SCR_006724

An Antibody supplier

View all literature mentions

PeproTech (tool)

RRID:SCR_006802

An Antibody supplier

View all literature mentions

Abcam (tool)

RRID:SCR_012931

A commercial antibody supplier which supplies primary and secondary antibodies, biochemicals, proteins, peptides, lysates, immunoassays and other kits.

View all literature mentions

THP-1 (tool)

RRID:CVCL_0006

Cell line THP-1 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

KG-1 (tool)

RRID:CVCL_0374

Cell line KG-1 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

C57BL/6J (tool)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions

HL-60 (tool)

RRID:CVCL_0002

Cell line HL-60 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

C57BL/6J (tool)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions

MV4-11 (tool)

RRID:CVCL_0064

Cell line MV4-11 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions