2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Molecular Characterization of Carbapenem-Resistant Enterobacter cloacae in 11 Chinese Cities.

Frontiers in microbiology | 2018

Carbapenem-resistant Enterobacteriaceae (CRE) are usually resistant to most of antibiotics. Infections caused by such bacteria have a high mortality and pose a serious threat to clinical management and public health. Enterobacter cloacae ranks third among Enterobacteriaceae that cause nosocomial infections. In this study, the molecular characteristics of carbapenem-resistant E. cloacae in China were investigated. From November 2012 to August 2016, 55 non-repetitive strains of carbapenem-resistant E. cloacae were collected from 12 hospitals in 11 Chinese cities. The bacteria were identified with matrix-assisted laser desorption/ionization time of flight mass spectrometry. Antimicrobial susceptibility tests were determined by agar dilution method. Carbapenemase and other β-lactamase genes were detected with PCR and sequencing. Multilocus sequence typing and plasmid conjugation tests were performed. Among the 55 E. cloacae strains, 50 strains were detected to produce 8 types of carbapenemase including NDM-1, NDM-5, IMP-4, IMP-26, IMP-1, KPC-2, and VIM-1. NDM-1 accounted for 68.0% (34/50) among the carbapenemase-producing E. cloacae. A total of 24 sequence types were identified and ST418 was the most common, accounting for 20% (11/55). For further investigation, a pulsed-field gel electrophoresis (PFGE) assay was conducted to identify the PFGE patterns of the strains. These 23 isolates yielded 13 PFGE patterns, which were designated as type A-M. Eight isolates obtained from Shenzhen had the same PFGE pattern (type A) and the remaining 15 isolates belonged to the other 12 PFGE patterns (type B-M). The observation that 8 of the 15 blaNDM-1-positive E. cloacae isolates obtained from Shenzhen with the same PFGE pattern (type A) suggested a transmission outbreak of a common strain. S1-nuclease PFGE and Southern blotting were also conducted to estimate the size of plasmids harbored by blaNDM-1-positive strains. The results showed that the plasmids harboring the blaNDM-1 gene ranged in size from approximately 52-58 kilobases. Our study indicates that carbapenem-resistant E. cloacae strains that produce NDM carbapenemase have strong resistance. Early detection and monitoring of the prevalence of these strains are urgent.

Pubmed ID: 30065717 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ATCC (tool)

RRID:SCR_001672

Global nonprofit biological resource center (BRC) and research organization that provides biological products, technical services and educational programs to private industry, government and academic organizations. Its mission is to acquire, authenticate, preserve, develop and distribute biological materials, information, technology, intellectual property and standards for the advancement and application of scientific knowledge. The primary purpose of ATCC is to use its resources and experience as a BRC to become the world leader in standard biological reference materials management, intellectual property resource management and translational research as applied to biomaterial development, standardization and certification. ATCC characterizes cell lines, bacteria, viruses, fungi and protozoa, as well as develops and evaluates assays and techniques for validating research resources and preserving and distributing biological materials to the public and private sector research communities.

View all literature mentions

SPSS (tool)

RRID:SCR_002865

Software package used for interactive, or batched, statistical analysis in social science, health sciences and marketing. Software platform offers advanced statistical analysis, a library of machine-learning algorithms, text analysis, open-source extensibility, integration with big data and deployment into applications.Versions that were produced by SPSS Inc. before the IBM acquisition (Versions 18 and earlier) would be given origin or publisher of SPSS Inc. in Chicago.

View all literature mentions

MLST (tool)

RRID:SCR_010245

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on March 17, 2022. A nucleotide sequence based approach for the unambiguous characterisation of isolates of bacteria and other organisms via the internet. The aim of MLST is to provide a portable, accurate, and highly discriminating typing system that can be used for most bacteria and some other organisms. It is envisaged that this approach will be particularly helpful for the typing of bacterial pathogens. To achieve this aim we have taken the proven concepts of multilocus enzyme electrophoresis (MLEE) and have adapted them so that alleles at each locus are defined directly, by nucleotide sequencing, rather than indirectly from the electrophoretic moblity of their gene products. MLST was developed in the laboratories of Martin Maiden, Dominique Caugant, Ian Feavers, Mark Achtman and Brian Spratt. This site is hosted at Imperial College with funding from the Wellcome Trust. The location of the subsites for the individual species are shown on their respective front pages.

View all literature mentions