Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Association of acute depressive symptoms and functional connectivity of emotional processing regions following sport-related concussion.

NeuroImage. Clinical | 2018

Acute mood disturbance following sport-related concussion is common and is known to adversely affect post-concussion symptoms and recovery. The physiological underpinnings of depressive symptoms following concussion, however, are relatively understudied. We hypothesized that functional connectivity of the emotional processing network would be altered in concussed athletes and associated with the severity of depressive symptoms following concussion. Forty-three concussed collegiate athletes were assessed at approximately one day (N = 34), one week (N = 34), and one month post-concussion (N = 30). Fifty-one healthy contact-sport athletes served as controls and completed a single visit. The Hamilton Rating Scale for Depression (HAM-D) was used to measure depressive symptoms. Resting state fMRI data was collected on a 3 T scanner (TR = 2 s) and functional connectivity was calculated in a meta-analytically derived network of regions associated with emotional processing. Concussed athletes had elevated depressive symptoms across the first month post-concussion relative to control athletes, but showed partial recovery by one month relative to more acute visits (ps < 0.05). Concussed athletes had significantly different connectivity in regions associated with emotional processing at one month post-concussion relative to one day post-concussion (p = 0.002) and relative to controls (p = 0.003), with higher connectivity between default mode and attention regions being common across analyses. Additionally, depressive symptoms in concussed athletes at one day (p = 0.003) and one week post-concussion (p = 7 × 10-8) were inversely correlated with connectivity between attention (e.g., right anterior insula) and default mode regions (e.g., medial prefrontal cortex). Finally, the relationships with HAM-D scores were not driven by a general increase in somatic complaints captured by the HAM-D, but were strongly associated with mood-specific HAM-D items. These results suggest that connectivity of emotional processing regions is associated with acute mood disturbance following sport-related concussion. Increased connectivity between attention and default mode regions may reflect compensatory mechanisms.

Pubmed ID: 29984152 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


FreeSurfer (tool)

RRID:SCR_001847

Open source software suite for processing and analyzing human brain MRI images. Used for reconstruction of brain cortical surface from structural MRI data, and overlay of functional MRI data onto reconstructed surface. Contains automatic structural imaging stream for processing cross sectional and longitudinal data. Provides anatomical analysis tools, including: representation of cortical surface between white and gray matter, representation of the pial surface, segmentation of white matter from rest of brain, skull stripping, B1 bias field correction, nonlinear registration of cortical surface of individual with stereotaxic atlas, labeling of regions of cortical surface, statistical analysis of group morphometry differences, and labeling of subcortical brain structures.Operating System: Linux, macOS.

View all literature mentions

Analysis of Functional NeuroImages (tool)

RRID:SCR_005927

Set of (mostly) C programs that run on X11+Unix-based platforms (Linux, Mac OS X, Solaris, etc.) for processing, analyzing, and displaying functional MRI (FMRI) data defined over 3D volumes and over 2D cortical surface meshes. AFNI is freely distributed as source code plus some precompiled binaries.

View all literature mentions

NeuroSynth (tool)

RRID:SCR_006798

Platform for large-scale, automated synthesis of functional magnetic resonance imaging (fMRI) data extracted from published articles. It''s a website wrapped around a set of open-source Python and JavaScript packages. Neurosynth lets you run crude but useful analyses of fMRI data on a very large scale. You can: * Interactively visualize the results of over 3,000 term-based meta-analyses * Select specific locations in the human brain and view associated terms * Browse through the nearly 10,000 studies in the database Their ultimate goal is to enable dynamic real-time analysis, so that you''ll be able to select foci, tables, or entire studies for analysis and run a full-blown meta-analysis without leaving your browser. You''ll also be able to do things like upload entirely new images and obtain probabilistic estimates of the cognitive states most likely to be associated with the image.

View all literature mentions