Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Improved sgRNA design in bacteria via genome-wide activity profiling.

Nucleic acids research | 2018

CRISPR/Cas9 is a promising tool in prokaryotic genome engineering, but its success is limited by the widely varying on-target activity of single guide RNAs (sgRNAs). Based on the association of CRISPR/Cas9-induced DNA cleavage with cellular lethality, we systematically profiled sgRNA activity by co-expressing a genome-scale library (∼70 000 sgRNAs) with Cas9 or its specificity-improved mutant in Escherichia coli. Based on this large-scale dataset, we constructed a comprehensive and high-density sgRNA activity map, which enables selecting highly active sgRNAs for any locus across the genome in this model organism. We also identified 'resistant' genomic loci with respect to CRISPR/Cas9 activity, notwithstanding the highly accessible DNA in bacterial cells. Moreover, we found that previous sgRNA activity prediction models that were trained on mammalian cell datasets were inadequate when coping with our results, highlighting the key limitations and biases of previous models. We hence developed an integrated algorithm to accurately predict highly effective sgRNAs, aiming to facilitate CRISPR/Cas9-based genome engineering, screenings and antimicrobials design in bacteria. We also isolated the important sgRNA features that contribute to DNA cleavage and characterized their key differences among wild type Cas9 and its mutant, shedding light on the biophysical mechanisms of the CRISPR/Cas9 system.

Pubmed ID: 29982721 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


BLASTN (tool)

RRID:SCR_001598

Web application to search nucleotide databases using a nucleotide query. Algorithms: blastn, megablast, discontiguous megablast.

View all literature mentions

SeqMap (tool)

RRID:SCR_005495

A software tool for mapping large amount of oligonucleotide to the genome. It is designed for finding all the places in a genome where an oligonucleotide could potentially come from. SeqMap can efficiently map as many as dozens of millions of short sequences to a genome of several billions of nucleotides. While doing the mapping, several mutations as well as insertions / deletions of the nucleotide bases in the sequences can be tolerated and furthermore detected. Various input and output formats are supported, as well as many command line options for tuning almost every steps in the mapping process. A typical mapping can be done in a few hours on an ordinary PC.

View all literature mentions

NumPy (tool)

RRID:SCR_008633

NumPy is the fundamental package needed for scientific computing with Python. It contains among other things: * a powerful N-dimensional array object * sophisticated (broadcasting) functions * tools for integrating C/C and Fortran code * useful linear algebra, Fourier transform, and random number capabilities. Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases. Sponsored by ENTHOUGHT

View all literature mentions

ATCC (tool)

RRID:SCR_001672

Global nonprofit biological resource center (BRC) and research organization that provides biological products, technical services and educational programs to private industry, government and academic organizations. Its mission is to acquire, authenticate, preserve, develop and distribute biological materials, information, technology, intellectual property and standards for the advancement and application of scientific knowledge. The primary purpose of ATCC is to use its resources and experience as a BRC to become the world leader in standard biological reference materials management, intellectual property resource management and translational research as applied to biomaterial development, standardization and certification. ATCC characterizes cell lines, bacteria, viruses, fungi and protozoa, as well as develops and evaluates assays and techniques for validating research resources and preserving and distributing biological materials to the public and private sector research communities.

View all literature mentions

Addgene (tool)

RRID:SCR_002037

Non-profit plasmid repository dedicated to helping scientists around the world share high-quality plasmids. Facilitates archiving and distributing DNA-based research reagents and associated data to scientists worldwide. Repository contains over 65,000 plasmids, including special collections on CRISPR, fluorescent proteins, and ready-to-use viral preparations. There is no cost for scientists to deposit plasmids, which saves time and money associated with shipping plasmids themselves. All plasmids are fully sequenced for validation and sequencing data is openly available. We handle the appropriate Material Transfer Agreements (MTA) with institutions, facilitating open exchange and offering intellectual property and liability protection for depositing scientists. Furthermore, we curate free educational resources for the scientific community including a blog, eBooks, video protocols, and detailed molecular biology resources.

View all literature mentions

scikit-learn (tool)

RRID:SCR_002577

scikit-learn: machine learning in Python

View all literature mentions

SciPy (tool)

RRID:SCR_008058

A Python-based environment of open-source software for mathematics, science, and engineering. The core packages of SciPy include: NumPy, a base N-dimensional array package; SciPy Library, a fundamental library for scientific computing; and IPython, an enhanced interactive console.

View all literature mentions

MatPlotLib (tool)

RRID:SCR_008624

Python 2D plotting library which produces publication quality figures in variety of hardcopy formats and interactive environments across platforms. Used in python scripts, web application servers, and six graphical user interface toolkits. Used to generate plots, histograms, power spectra, bar charts, error charts, scatter plots.

View all literature mentions

Circos (tool)

RRID:SCR_011798

A software package for visualizing data and information. It visualizes data in a circular layout - this makes Circos ideal for exploring relationships between objects or positions.

View all literature mentions

Biopython (tool)

RRID:SCR_007173

Biopython is a set of freely available tools for biological computation written in Python by an international team of developers. It is a distributed collaborative effort to develop Python libraries and applications which address the needs of current and future work in bioinformatics. The source code is made available under the Biopython License, which is extremely liberal and compatible with almost every license in the world. It works along with the Open Bioinformatics Foundation, who generously host it''s website, bug tracker, and mailing lists. Sponsor: This resource is supported by the Open Bioinformatics Foundation. Keywords: Tool, Software, Python, Biological, Computation, Bioinformatics,

View all literature mentions