Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Spatial learning and memory deficits in young adult mice exposed to a brief intense noise at postnatal age.

Journal of otology | 2015

Noise pollution is a major hazardous factor to human health and is likely harmful for vulnerable groups such as pre-term infants under life-support system in an intensive care unit. Previous studies have suggested that noise exposure impairs children's learning ability and cognitive performance and cognitive functions in animal models in which the effect is mainly attributed to the oxidant stress of noise on the cognitive brain. The potential role of noise induced hearing loss (NIHL), rather than the oxidant stress, has also been indicated by a depression of neurogenesis in the hippocampus long after a brief noise exposure, which produces only a tentative oxidant stress. It is not clear if noise exposure and NIHL during early development exerts a long term impact on cognitive function and neurogenesis towards adulthood. In the present study, a brief noise exposure at high sound level was performed in neonatal C57BL/6J mice (15 days after birth) to produce a significant amount of permanent hearing loss as proved 2 months after the noise. At this age, the noise-exposed animals showed deteriorated spatial learning and memory abilities and a reduction of hippocampal neurogenesis as compared with the control. The averaged hearing threshold was found to be strongly correlated with the scores for spatial learning and memory. We consider the effects observed are largely due to the loss of hearing sensitivity, rather than the oxidant stress, due to the long interval between noise exposure and the observations.

Pubmed ID: 29937778 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


C57BL/6J (tool)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions