2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Focal Adhesions Undergo Longitudinal Splitting into Fixed-Width Units.

Current biology : CB | 2018

Focal adhesions (FAs) and stress fibers (SFs) act in concert during cell motility and in response to the extracellular environment. Although the structures of mature FAs and SFs are well studied, less is known about how they assemble and mature de novo during initial cell spreading. In this study using live-cell Airyscan microscopy, we find that FAs undergo "splitting" during their assembly, in which the FA divides along its longitudinal axis. Before splitting, FAs initially appear as assemblies of multiple linear units (FAUs) of 0.3-μm width. Splitting occurs between FAUs, resulting in mature FAs of either a single FAU or of a small number of FAUs that remain attached at their distal tips. Variations in splitting occur based on cell type and extracellular matrix. Depletion of adenomatous polyposis coli (APC) or vasodilator-stimulated phosphoprotein (VASP) results in reduced splitting. FA-associated tension increases progressively during splitting. Early in cell spreading, ventral SFs are detected first, with other SF sub-types (transverse arcs and dorsal SFs) being detected later. Our findings suggest that the fundamental unit of FAs is the fixed-width FAU, and that dynamic interactions between FAUs control adhesion morphology.

Pubmed ID: 29910076 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


APC antibody (antibody)

RRID:AB_301806

This polyclonal targets APC

View all literature mentions

Myosin IIb Antibody (antibody)

RRID:AB_1264210

This polyclonal targets Myosin IIb

View all literature mentions

VASP (9A2) Rabbit mAb (antibody)

RRID:AB_2213393

This monoclonal targets VASP

View all literature mentions

Imaris (software resource)

RRID:SCR_007370

Imaris provides range of capabilities for working with three dimensional images. Uses flexible editing and processing functions, such as interactive surface rendering and object slicing capabilities. And output to standard TIFF, Quicktime and AVI formats. Imaris accepts virtually all image formats that are used in confocal microscopy and many of those used in wide-field image acquisition.

View all literature mentions

ImageJ (software resource)

RRID:SCR_003070

Open source Java based image processing software program designed for scientific multidimensional images. ImageJ has been transformed to ImageJ2 application to improve data engine to be sufficient to analyze modern datasets.

View all literature mentions

U2OS (cell line)

RRID:CVCL_0042

Cell line U2OS is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions