Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Capecitabine reverses tumor escape from anti-VEGF through the eliminating CD11bhigh/Gr1high myeloid cells.

Oncotarget | 2018

The anti-VEGF humanized antibody bevacizumab suppresses various malignancies, but tumors can acquire drug resistance. Preclinical studies suggest myeloid-derived suppressor cells (MDSCs) may be associated with tumor refractoriness to anti-VEGF treatment. Here we report a novel mechanism of tumor escape from anti-VEGF therapy. Anti-VEGF treatment enhanced intratumoral recruitment of CD11bhigh/Gr-1high polymorphonuclear (PMN)-MDSCs in anti-VEGF-resistant Lewis lung carcinoma tumors. This effect was diminished by the anticancer agent capecitabine, a pro-drug converted to 5-fluorouracil, but not by 5-fluorouracil itself. This process was mediated by enhanced intratumoral granulocyte-colony stimulating factor expression, as previously demonstrated. However, neither interleukin-17 nor Bv8, which were previously identified as key contributors to anti-VEGF resistance, was involved in this model. Capecitabine eliminated PyNPase-expressing MDSCs from both tumors and peripheral blood. Capecitabine treatment also reversed inhibition of both antitumor angiogenesis and tumor growth under anti-VEGF antibody treatment, and this effect partially inhibited in tumors implanted in mice deficient in both PyNPases. These results indicate that intratumoral granulocyte-colony stimulating factor expression and CD11bhigh/Gr-1high PMN-MDSC recruitment underlie tumor resistance to anti-VEGF therapy, and suggest PyNPases are potentially useful targets during anti-angiogenic therapy.

Pubmed ID: 29707135 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ATCC (tool)

RRID:SCR_001672

Global nonprofit biological resource center (BRC) and research organization that provides biological products, technical services and educational programs to private industry, government and academic organizations. Its mission is to acquire, authenticate, preserve, develop and distribute biological materials, information, technology, intellectual property and standards for the advancement and application of scientific knowledge. The primary purpose of ATCC is to use its resources and experience as a BRC to become the world leader in standard biological reference materials management, intellectual property resource management and translational research as applied to biomaterial development, standardization and certification. ATCC characterizes cell lines, bacteria, viruses, fungi and protozoa, as well as develops and evaluates assays and techniques for validating research resources and preserving and distributing biological materials to the public and private sector research communities.

View all literature mentions

FlowJo (tool)

RRID:SCR_008520

Software for single-cell flow cytometry analysis. Its functions include management, display, manipulation, analysis and publication of the data stream produced by flow and mass cytometers.

View all literature mentions

Genentech (tool)

RRID:SCR_003997

A biotechnology corporation that uses human genetic information to discover, develop, manufacture and commercialize medicines to treat patients with serious or life-threatening medical conditions.

View all literature mentions

C57BL/6J (tool)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions

B16-F1 (tool)

RRID:CVCL_0158

Cell line B16-F1 is a Cancer cell line with a species of origin Mus musculus (Mouse)

View all literature mentions

HCT 116 (tool)

RRID:CVCL_0291

Cell line HCT 116 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

B16-F1 (tool)

RRID:CVCL_0158

Cell line B16-F1 is a Cancer cell line with a species of origin Mus musculus (Mouse)

View all literature mentions