Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Prognostic role of elevated mir-24-3p in breast cancer and its association with the metastatic process.

Oncotarget | 2018

MicroRNAs have been shown to play important roles in breast cancer progression and can serve as biomarkers. To assess the prognostic role of a panel of miRNAs in breast cancer, we collected plasma prospectively at the time of initial diagnosis from 1,780 patients with stage I-III breast cancer prior to definitive treatment. We identified plasma from 115 patients who subsequently developed distant metastases and 115 patients without metastatic disease. Both groups were matched by: age at blood collection, year of blood collection, breast cancer subtype, and stage. The median follow up was 3.4 years (range, 1-9 years). We extracted RNA from plasma and analyzed the expression of 800 miRNAs using Nanostring technology. We then assessed the expression of miRNAs in primary and metastatic breast cancer samples from The Cancer Genome Atlas (TCGA). We found that, miR-24-3p was upregulated in patients with metastases, both in plasma and in breast cancer tissues. Patients whose primary tumors expressed high levels of miR-24-3p had a significantly lower survival rate compared to patients with low mir-24-3p levels in the TCGA cohort (n=1,024). RNA-Seq data of the samples with the highest miR-24-3p expression versus those with the lowest miR-24-3p in the TCGA cohort identified a specific gene expression signature for those tumors with high miR-24-3p. Possible target genes for miR-24-3p were predicted based on gene expression and binding site, and their effects on cancer pathways were evaluated. Cancer, breast cancer and proteoglycans were the top three pathways affected by miR-24-3p overexpression.

Pubmed ID: 29560116 RIS Download

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: P30 CA016087

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


University of Texas MD Anderson Cancer Center (tool)

RRID:SCR_004699

The mission of The University of Texas MD Anderson Cancer Center is to eliminate cancer in Texas, the nation, and the world through outstanding programs that integrate patient care, research and prevention, and through education for undergraduate and graduate students, trainees, professionals, employees and the public. VISION: We shall be the premier cancer center in the world, based on the excellence of our people, our research-driven patient care and our science. We are Making Cancer History.

View all literature mentions

TargetScan (tool)

RRID:SCR_010845

Web tool to predict biological targets of miRNAs by searching for presence of conserved 8mer, 7mer and 6mer sites that match seed region of each miRNA. Nonconserved sites are also predicted and sites with mismatches in seed region that are compensated by conserved 3' pairing. Used to search for predicted microRNA targets in mammals.

View all literature mentions

Circos (tool)

RRID:SCR_011798

A software package for visualizing data and information. It visualizes data in a circular layout - this makes Circos ideal for exploring relationships between objects or positions.

View all literature mentions

ggplot2 (tool)

RRID:SCR_014601

Open source software package for statistical programming language R to create plots based on grammar of graphics. Used for data visualization to break up graphs into semantic components such as scales and layers.

View all literature mentions

DESeq2 (tool)

RRID:SCR_015687

Software package for differential gene expression analysis based on the negative binomial distribution. Used for analyzing RNA-seq data for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates.

View all literature mentions

New York University School of Medicine Langone Health Microscopy Laboratory Core Facility (tool)

RRID:SCR_017934

Core offers comprehensive light and electron microscopy technologies. Our scientists use light microscopes and electron microscopes at resolutions ranging from centimeters to angstroms, providing clear and detailed images.We assist at every stage of your experiment, offering research-design consultation and instrument training, as well as guidance in study execution, analysis, and presentation for publication.

View all literature mentions