Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Two distinct domains contribute to the substrate acyl chain length selectivity of plant acyl-ACP thioesterase.

Nature communications | 2018

The substrate specificity of acyl-ACP thioesterase (TE) plays an essential role in controlling the fatty acid profile produced by type II fatty acid synthases. Here we identify two groups of residues that synergistically determine different substrate specificities of two acyl-ACP TEs from Cuphea viscosissima (CvFatB1 and CvFatB2). One group (V194, V217, N223, R226, R227, and I268 in CvFatB2) is critical in determining the structure and depth of a hydrophobic cavity in the N-terminal hotdog domain that binds the substrate's acyl moiety. The other group (255-RKLSKI-260 and 285-RKLPKL-289 in CvFatB2) defines positively charged surface patches that may facilitate binding of the ACP moiety. Mutagenesis of residues within these two groups results in distinct synthetic acyl-ACP TEs that efficiently hydrolyze substrates with even shorter chains (C4- to C8-ACPs). These insights into structural determinants of acyl-ACP TE substrate specificity are useful in modifying this enzyme for tailored fatty acid production in engineered organisms.

Pubmed ID: 29491418 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


GenBank (tool)

RRID:SCR_002760

NIH genetic sequence database that provides annotated collection of all publicly available DNA sequences for almost 280 000 formally described species (Jan 2014) .These sequences are obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects, including whole-genome shotgun (WGS) and environmental sampling projects. Most submissions are made using web-based BankIt or standalone Sequin programs, and GenBank staff assigns accession numbers upon data receipt. It is part of International Nucleotide Sequence Database Collaboration and daily data exchange with European Nucleotide Archive (ENA) and DNA Data Bank of Japan (DDBJ) ensures worldwide coverage. GenBank is accessible through NCBI Entrez retrieval system, which integrates data from major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of GenBank database are available by FTP.

View all literature mentions

Bio-Rad Laboratories (tool)

RRID:SCR_008426

Commercial instrument and chemical vendor. Developer and manufacturer of specialized technological products for life science research and clinical diagnostics markets.

View all literature mentions

I-TASSER (tool)

RRID:SCR_014627

Web server as integrated platform for automated protein structure and function prediction. Used for protein 3D structure prediction. Resource for automated protein structure prediction and structure-based function annotation.

View all literature mentions

New England Biolabs (tool)

RRID:SCR_013517

An Antibody supplier

View all literature mentions