Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Histamine drives severity of innate inflammation via histamine 4 receptor in murine experimental colitis.

Mucosal immunology | 2018

Ulcerative colitis (UC) patients exhibit elevated histamine, but how histamine exacerbates disease is unclear as targeting histamine 1 receptor (H1R) or H2R is clinically ineffective. We hypothesized that histamine functioned instead through the other colon-expressed histamine receptor, H4R. In humans, UC patient biopsies exhibited increased H4R RNA and protein expression over control tissue, and immunohistochemistry showed that H4R was in proximity to immunopathogenic myeloperoxidase-positive neutrophils. To characterize this association further, we employed both the oxazolone (Ox)- and dextran sulfate sodium (DSS)-induced experimental colitis mouse models and also found upregulated H4R expression. Mast cell (MC)-derived histamine and H4R drove experimental colitis, as H4R-/- mice had lower symptom scores, neutrophil-recruitment mediators (colonic interleukin-6 (IL-6), CXCL1, CXCL2), and mucosal neutrophil infiltration than wild-type (WT) mice, as did MC-deficient KitW-sh/W-sh mice reconstituted with histidine decarboxylase-deficient (HDC-/-) bone marrow-derived MCs compared with WT-reconstituted mice; adaptive responses remained intact. Furthermore, Rag2-/- × H4R-/- mice had reduced survival, exacerbated colitis, and increased bacterial translocation than Rag2-/- mice, revealing an innate protective antibacterial role for H4R. Taken together, colonic MC-derived histamine initiates granulocyte infiltration into the colonic mucosa through H4R, suggesting alternative therapeutic targets beyond adaptive immunity for UC.

Pubmed ID: 29363669 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIAID NIH HHS, United States
    Id: R01 AI076456
  • Agency: NIGMS NIH HHS, United States
    Id: R25 GM079300
  • Agency: NIAID NIH HHS, United States
    Id: R01 AI061701
  • Agency: NIAID NIH HHS, United States
    Id: T32 AI083216
  • Agency: NIDDK NIH HHS, United States
    Id: K08 DK097721
  • Agency: CSRD VA, United States
    Id: I01 CX001353

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Jackson Laboratory (tool)

RRID:SCR_004633

An independent, nonprofit organization focused on mammalian genetics research to advance human health. Their mission is to discover the genetic basis for preventing, treating, and curing human disease, and to enable research for the global biomedical community. Jackson Laboratory breeds and manages colonies of mice as resources for other research institutions and laboratories, along with providing software and techniques. Jackson Lab also conducts genetic research and provides educational material for various educational levels.

View all literature mentions

BALB/cAnNCrl (tool)

RRID:MGI:2683685

laboratory mouse with name BALB/cAnNCrl from MGI.

View all literature mentions

C57BL/6J (tool)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions

C57BL/6J (tool)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions