Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Design, Synthesis and Evaluation of Oxazaborine Inhibitors of the NLRP3 Inflammasome.

ChemMedChem | 2018

The NLRP3 inflammasome is an important regulator of the sterile inflammatory response, and its activation by host-derived sterile molecules leads to the intracellular activation of caspase-1, processing of the pro-inflammatory cytokines interleukin-1β (IL-1β)/IL-18, and pyroptotic cell death. Inappropriate activation of NLRP3 drives a chronic inflammatory response and is implicated in several non-communicable diseases, including gout, atherosclerosis, type II diabetes and Alzheimer's disease. In this study, we report the design, synthesis and biological evaluation of novel boron compounds (NBCs) as NLRP3 inflammasome inhibitors. Structure-activity relationships (SAR) show that 4-fluoro substituents on the phenyl rings retain NLRP3 inhibitory activity, whereas more steric and lipophilic substituents diminish activity. Loss of inhibitory activity is also observed if the CCl3 group on the oxazaborine ring is replaced by a CF3 group. These findings provide additional understanding of the NBC series and will aid in the development of these NLRP3 inhibitors as tool compounds or therapeutic candidates for sterile inflammatory diseases.

Pubmed ID: 29331080 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: Medical Research Council, United Kingdom

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


FISHER (tool)

RRID:SCR_009181

THIS RESOURCE IS NO LONGER IN SERVICE, documented on February 1st, 2022. Software application for genetic analysis of classical biometric traits like blood pressure or height that are caused by a combination of polygenic inheritance and complex environmental forces. (entry from Genetic Analysis Software)

View all literature mentions