Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Diseases and their clinical heterogeneity - Are we ignoring the SNiPers and micRomaNAgers? An illustration using Beta-thalassemia clinical spectrum and fetal hemoglobin levels.

Genomics | 2019

Diseases and pathological ailments are known to perplex clinicians and researchers with their varied clinical manifestations. Such variations are mostly attributed to the complex interplays between numerous molecular players and their modifiers. This complexity in turn baffles scientists further to tweak multiple players together when attempting to identify definitive therapeutic interventions. In this pursuit, researchers often tend to ignore one of the commonest known genetic variations - single nucleotide polymorphisms (SNPs) in non-coding genetic regions. In this study, we demonstrate how SNPs in critical genes and their miRNA regulators may play a crucial role in varied clinical manifestations using the beta-thalassemia clinical spectrum and fetal hemoglobin levels (HbF) as an illustration. A methodological approach using freely available bioinformatics tools was able to identify SNPs in pre-miRNA regions, pre-miRNA flanking regions and miRNA binding sites which in turn are expected to alter the translation process and thereby the expression of HbF.

Pubmed ID: 29309842 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


STRING (tool)

RRID:SCR_005223

Database of known and predicted protein interactions. The interactions include direct (physical) and indirect (functional) associations and are derived from four sources: Genomic Context, High-throughput experiments, (Conserved) Coexpression, and previous knowledge. STRING quantitatively integrates interaction data from these sources for a large number of organisms, and transfers information between these organisms where applicable. The database currently covers 5''214''234 proteins from 1133 organisms. (2013)

View all literature mentions

GeneMANIA (tool)

RRID:SCR_005709

Data analysis service to predict the function of your favorite genes and gene sets. Indexing 1,421 association networks containing 266,984,699 interactions mapped to 155,238 genes from 7 organisms. GeneMANIA interaction networks are available for download in plain text format. GeneMANIA finds other genes that are related to a set of input genes, using a very large set of functional association data. Association data include protein and genetic interactions, pathways, co-expression, co-localization and protein domain similarity. You can use GeneMANIA to find new members of a pathway or complex, find additional genes you may have missed in your screen or find new genes with a specific function, such as protein kinases. Your question is defined by the set of genes you input. If members of your gene list make up a protein complex, GeneMANIA will return more potential members of the protein complex. If you enter a gene list, GeneMANIA will return connections between your genes, within the selected datasets. GeneMANIA suggests annotations for genes based on Gene Ontology term enrichment of highly interacting genes with the gene of interest. GeneMANIA is also a gene recommendation system. GeneMANIA is also accessible via a Cytoscape plugin, designed for power users. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

View all literature mentions