Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

DNA binding by the MATα2 transcription factor controls its access to alternative ubiquitin-modification pathways.

Molecular biology of the cell | 2018

Like many transcription factors, the yeast protein MATalpha2 (α2) undergoes rapid proteolysis via the ubiquitin-proteasome system (UPS). At least two ubiquitylation pathways regulate α2 degradation: one pathway utilizes the ubiquitin ligase (E3) Doa10 and the other the heterodimeric E3 Slx5/Slx8. Doa10 is a transmembrane protein of the endoplasmic reticulum/inner nuclear membrane, whereas Slx5/Slx8 localizes to the nucleus and binds DNA nonspecifically. While a single protein can often be ubiquitylated by multiple pathways, the reasons for this "division of labor" are not well understood. Here we show that α2 mutants with impaired DNA binding become inaccessible to the Slx5/Slx8 pathway but are still rapidly degraded through efficient shunting to the Doa10 pathway. These results are consistent with the distinct localization of these E3s. We also characterized a novel class of DNA binding-defective α2 variants whose degradation is strongly impaired. Our genetic data suggest that this is due to a gain-of-function interaction that limits their access to Doa10. Together, these results suggest multiple ubiquitin-ligation mechanisms may have evolved to promote rapid destruction of a transcription factor that resides in distinct cellular subcompartments under different conditions. Moreover, gain-of-function mutations, which also occur with oncogenic forms of human transcription factors such as p53, may derail this fail-safe system.

Pubmed ID: 29298839 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: F32 GM097794
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM046904
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM053756
  • Agency: NIGMS NIH HHS, United States
    Id: R37 GM046904

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


MP Biomedicals (tool)

RRID:SCR_013308

An Antibody supplier

View all literature mentions

AxioVision Imaging System (tool)

RRID:SCR_002677

Digital image processing system where microscope settings and processing steps may be adjusted in single user interface. Can acquire images from variety of cameras. Includes software package for capturing, archiving and preparing images for publication. Allows users to visualize and present images in several dimensions. Functionality of imaging toolbox expands constantly with wide range of different modules that are tailored to specific applications or microscope accessories. This resource is duplicated by SCR_018376

View all literature mentions

New England Biolabs (tool)

RRID:SCR_013517

An Antibody supplier

View all literature mentions

Adobe Photoshop (tool)

RRID:SCR_014199

Software for image processing, analysis, and editing. The software includes features such as touch capabilities, a customizable toolbar, 2D and 3D image merging, and Cloud access and options.

View all literature mentions

ImageQuant (tool)

RRID:SCR_014246

Software for automatic general image analysis. It provides fully automatic analysis of 1-D gels including lane creation, background subtraction, band detection, molecular weight calibration, quantity calibration, and normalization. Editing tools are provided for cropping, rotating, and filtering images.

View all literature mentions