Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Growth phenotype analysis of heme synthetic enzymes in a halophilic archaeon, Haloferax volcanii.

PloS one | 2017

Halophilic euryarchaea lack many of the genes necessary for the protoporphyrin-dependent heme biosynthesis pathway previously identified in animals and plants. Bioinformatic analysis suggested the presence of two heme biosynthetic processes, an Fe-coproporphyrinogen III (coproheme) decarboxylase (ChdC) pathway and an alternative heme biosynthesis (Ahb) pathway, in Haloferax volcanii. PitA is specific to the halophilic archaea and has a unique molecular structure in which the ChdC domain is joined to the antibiotics biosynthesis monooxygenase (ABM)-like domain by a histidine-rich linker sequence. The pitA gene deletion variant of H. volcanii showed a phenotype with a significant reduction of aerobic growth. Addition of a protoheme complemented the phenotype, supporting the assumption that PitA participates in the aerobic heme biosynthesis. Deletion of the ahbD gene caused a significant reduction of only anaerobic growth by denitrification or dimethylsulfoxide (DMSO) respiration, and the growth was also complemented by addition of a protoheme. The experimental results suggest that the two heme biosynthesis pathways are utilized selectively under aerobic and anaerobic conditions in H. volcanii. The molecular structure and physiological function of PitA are also discussed on the basis of the limited proteolysis and sequence analysis.

Pubmed ID: 29284023 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


PSIPRED (tool)

RRID:SCR_010246

Web tool as secondary structure prediction method, incorporating two feed forward neural networks which perform analysis on output obtained from PSI-BLAST. Web server offering analyses of protein sequences.

View all literature mentions

PITA (tool)

RRID:SCR_010853

Catalogs of predicted microRNA targets in worm (based on ce6 genome assembly), fly (dm3), mouse (mm9) and human (hg18). We follow standard seed parameter settings and consider seeds of length 6-8 bases, beginning at position 2 of the microRNA. No mismatches or loops are allowed, but a single G:U wobble is allowed in 7- or 8-mers. In genes missing a 3' UTR annotation, 500 bp (fly), 800 bp (human and mouse) or 300 bp (worm) downstream of the annotated end of the coding sequence were used as the predicted UTR. For each organism, a catalog with zero flank and with a flank of 3 and 15 bases upstream and downstream.

View all literature mentions