Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Non-coding RNAs profiling in head and neck cancers.

NPJ genomic medicine | 2016

The majority of studies on human cancers published to date focus on coding genes. More recently, however, non-coding RNAs (ncRNAs) are gaining growing recognition as important regulatory components. Here we characterise the ncRNA landscape in 442 head and neck squamous cell carcinomas (HNSCs) from the cancer genome atlas (TCGA). HNSCs represent an intriguing case to study the potential role of ncRNA as a function of viral presence, especially as HPV is potentially oncogenic. Thus, we identify HPV16-positive (HPV16+) and HPV-negative (HPV-) tumours and study the expression of ncRNAs on both groups. Overall, the ncRNAs comprise 36% of all differentially expressed genes, with antisense RNAs being the most represented ncRNA type (12.6%). Protein-coding genes appear to be more frequently downregulated in tumours compared with controls, whereas ncRNAs show significant upregulation in tumours, especially in HPV16+ tumours. Overall, expression of pseudogenes, antisense and short RNAs is elevated in HPV16+ tumours, while the remaining long non-coding RNA types are more active in all HNSC tumours independent of HPV status. In addition, we identify putative regulatory targets of differentially expressed ncRNAs. Among these 'targets' we find several well-established oncogenes, tumour suppressors, cytokines, growth factors and cell differentiation genes, which indicates the potential involvement of ncRNA in the control of these key regulators as a direct consequence of HPV oncogenic activity. In conclusion, our findings establish the ncRNAs as crucial transcriptional components in HNSCs. Our results display the great potential for the study of ncRNAs and the role they have in human cancers.

Pubmed ID: 29263803 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: R03 CA171052

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Gene Set Enrichment Analysis (tool)

RRID:SCR_003199

Software package for interpreting gene expression data. Used for interpretation of a large-scale experiment by identifying pathways and processes.

View all literature mentions

DAVID (tool)

RRID:SCR_001881

Bioinformatics resource system including web server and web service for functional annotation and enrichment analyses of gene lists. Consists of comprehensive knowledgebase and set of functional analysis tools. Includes gene centered database integrating heterogeneous gene annotation resources to facilitate high throughput gene functional analysis.

View all literature mentions

MetaCore (tool)

RRID:SCR_008125

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on March 17, 2022. An integrated software suite for functional analysis of experimental data. The scope of data types includes microarray and SAGE gene expression, SNPs and CGH arrays, proteomics, metabolomics, pathway analysis, Y2H and other custom interactions. MetaCore is based on a proprietary manually curated database of human protein-protein, protein-DNA and protein compound interactions, metabolic and signaling pathways and the effects of bioactive molecules in gene expression.

View all literature mentions