Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Decreased KPNB1 Expression is Induced by PLK1 Inhibition and Leads to Apoptosis in Lung Adenocarcinoma.

Journal of Cancer | 2017

Lung cancer is a major cause of death worldwide, with lung adenocarcinoma being the most frequently diagnosed subtype in Japan. Finding the target of an anticancer drug can improve lung adenocarcinoma treatments. Polo-like kinase 1 (PLK1) is an essential mitotic kinase in mitotic progression, and PLK1 inhibition induces cell cycle arrest and apoptosis in tumor cells. In addition, a variety of PLK1 inhibitors have been identified for cancer treatments. In this study, we looked for the target gene of the anticancer drug that has synergy with PLK1 inhibitors. We identified karyopherin beta 1 (KPNB1) as a possible target for lung adenocarcinoma treatment. We found that PLK1 inhibition decreased KPNB1 expression in lung adenocarcinoma cells and KPNB1 depletion inhibited cell proliferation via apoptosis. The same apoptosis signaling pathway may be activated because the expression of common apoptosis-related genes was decreased by PLK1 and KPNB1 silencing; however, the time course of cell growth inhibition was somewhat different. Cell cycle analysis showed that KPNB1 depletion increased the proportion of cells at the G0/G1 phase, although cells also accumulated at the G2/M phase in PLK1-depleted cells. Our findings suggest that decreased KPNB1 expression may be associated with the apoptosis induced by PLK1 inhibition.

Pubmed ID: 29187890 RIS Download

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


GE Healthcare (tool)

RRID:SCR_000004

A commercial antibody supplier and provider of various services.

View all literature mentions

Bio-Rad Laboratories (tool)

RRID:SCR_008426

Commercial instrument and chemical vendor. Developer and manufacturer of specialized technological products for life science research and clinical diagnostics markets.

View all literature mentions

Thermo Fisher Scientific (tool)

RRID:SCR_008452

Commercial vendor and service provider of laboratory reagents and antibodies. Supplier of scientific instrumentation, reagents and consumables, and software services.

View all literature mentions

Cell Signaling Technology (tool)

RRID:SCR_004431

Privately held company that develops and produces antibodies, ELISA kits, ChIP kits, proteomic kits, and other related reagents used to study cell signaling pathways that impact human health.

View all literature mentions

Applied Biosystems (tool)

RRID:SCR_005039

An Antibody supplier

View all literature mentions

FlowJo (tool)

RRID:SCR_008520

Software for single-cell flow cytometry analysis. Its functions include management, display, manipulation, analysis and publication of the data stream produced by flow and mass cytometers.

View all literature mentions

NCI-H1299 (tool)

RRID:CVCL_0060

Cell line NCI-H1299 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

HeLa (tool)

RRID:CVCL_0030

Cell line HeLa is a Cancer cell line with a species of origin Homo sapiens

View all literature mentions

A-549 (tool)

RRID:CVCL_0023

Cell line A-549 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions