Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A peptidomimetic with a chiral switch is an inhibitor of epidermal growth factor receptor heterodimerization.

Oncotarget | 2017

Among different types of EGFR dimers, EGFR-HER2 and HER2-HER3 are well known in different types of cancers. Targeting dimerization of EGFR will have a significant impact on cancer therapies. A symmetric peptidomimetic was designed to inhibit the protein-protein interaction of EGFR. The peptidomimetic (Cyclo(1,10)PpR (R) Anapa-FDDF-(R)-Anapa)R, compound 18) was shown to exhibit antiproliferative activity with an IC50 of 194 nM in HER2-expressing breast cancer cell lines and 18 nM in lung cancer cell lines. The peptidomimetic has a Pro-Pro sequence in the structure to stabilize the β-turn and a β-amino acid, amino napthyl propionic acid. To investigate the effect of the chirality of β-amino acid on the structure of the peptide and its antiproliferative activity, diastereoisomers of compound 18 were designed and synthesized. Structure-activity relationships of these compounds indicated that there is a chiral switch at β-amino acid in the designed compound. The peptidomimetic with R configuration at β-amino acid and with a L-Pro-D-Pro sequence was the most active compound (18). Using enzyme complement fragmentation assay and proximity ligation assay, we show that compound 18 inhibits HER2:HER3 and EGFR:HER2 dimerization. Surface plasmon resonance studies suggested that compound 18 binds to the HER2 extracellular domain and in particular to domain IV. The anticancer activity of compound 18 was evaluated using a xenograft model of breast cancer in mice; compound 18 suppressed the tumor growth in mice compared to control. Compound 18 was also shown to have a synergistic effect with erlotinib on EGFR mutated lung cancer cell lines.

Pubmed ID: 29088782 RIS Download

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: P20 GM103424
  • Agency: NCI NIH HHS, United States
    Id: R15 CA188225

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ATCC (tool)

RRID:SCR_001672

Global nonprofit biological resource center (BRC) and research organization that provides biological products, technical services and educational programs to private industry, government and academic organizations. Its mission is to acquire, authenticate, preserve, develop and distribute biological materials, information, technology, intellectual property and standards for the advancement and application of scientific knowledge. The primary purpose of ATCC is to use its resources and experience as a BRC to become the world leader in standard biological reference materials management, intellectual property resource management and translational research as applied to biomaterial development, standardization and certification. ATCC characterizes cell lines, bacteria, viruses, fungi and protozoa, as well as develops and evaluates assays and techniques for validating research resources and preserving and distributing biological materials to the public and private sector research communities.

View all literature mentions

Genentech (tool)

RRID:SCR_003997

A biotechnology corporation that uses human genetic information to discover, develop, manufacture and commercialize medicines to treat patients with serious or life-threatening medical conditions.

View all literature mentions

AutoDock (tool)

RRID:SCR_012746

Software suite of automated docking tools. Designed to predict how small molecules, such as substrates or drug candidates, bind to receptor of known 3D structure. AutoDock consist of AutoDock 4 and AutoDock Vina. AutoDock 4 consists of autodock to perform docking of ligand to set of grids describing target protein, and autogrid to pre calculate these grids.

View all literature mentions

SK-BR-3 (tool)

RRID:CVCL_0033

Cell line SK-BR-3 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

SK-OV-3 (tool)

RRID:CVCL_0532

Cell line SK-OV-3 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

BT-474 (tool)

RRID:CVCL_0179

Cell line BT-474 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

MCF-7 (tool)

RRID:CVCL_0031

Cell line MCF-7 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

MCF-10A (tool)

RRID:CVCL_0598

Cell line MCF-10A is a Spontaneously immortalized cell line with a species of origin Homo sapiens

View all literature mentions

NCI-H1975 (tool)

RRID:CVCL_1511

Cell line NCI-H1975 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

Crl:NU(NCr)-Foxn1nu (tool)

RRID:IMSR_CRL:490

Mus musculus with name Crl:NU(NCr)-Foxn1nu from IMSR.

View all literature mentions

U2OS (tool)

RRID:CVCL_0042

Cell line U2OS is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

Calu-3 (tool)

RRID:CVCL_0609

Cell line Calu-3 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions