Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Kaposi's Sarcoma-Associated Herpesvirus Increases PD-L1 and Proinflammatory Cytokine Expression in Human Monocytes.

mBio | 2017

Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with the human malignancy Kaposi's sarcoma and the lymphoproliferative disorders primary effusion lymphoma and multicentric Castleman's disease. KSHV establishes lytic infection of monocytes in vivo, which may represent an important cellular reservoir during KS disease progression. KS tumors consist of latently infected endothelial cells; however, lytic phase gene products are important for KS onset. Early KS lesion progression is driven by proinflammatory cytokines supplied by immune cell infiltrates including T cells and monocytes. KSHV-infected monocytes may supply the lytic viral products and the inflammatory milieu conducive to KS tumor progression. To establish successful infection, KSHV extensively modulates the host immune system. KSHV antigens activate both innate and adaptive immune responses including KSHV-specific T cells, but lifelong infection is still established. Programmed death ligand 1 (PD-L1) is a prosurvival cell surface protein that suppresses T-cell-mediated killing. PD-L1 is variably present on various tumor cells and is a targetable marker for cancer treatment. We show that KSHV infection of human monocytes increases PD-L1 expression and transcription in a dose-dependent manner. We also saw evidence of lytic gene expression in the KSHV-infected monocytes. Intact KSHV is needed for full PD-L1 response in human monocytes. KSHV induces a general proinflammatory cytokine milieu including interleukins 1α, 1β, and 6, which have been implicated in early KS lesion progression. KSHV-mediated PD-L1 increase may represent a novel mechanism of KSHV-mediated immune modulation to allow for virus survival and eventually malignant progression.IMPORTANCE KSHV is the etiologic agent of Kaposi's sarcoma and the lymphoproliferative disorders primary effusion lymphoma and multicentric Castleman's disease. Programmed death ligand 1 (PD-L1) is an immunosuppressive cell surface marker that inhibits T cell activation. We report that KSHV infection of primary human monocytes upregulates PD-L1 transcription and protein expression. Analysis of the cytokine and chemokine milieu following KSHV infection of monocytes revealed that KSHV induces interleukins 1α, 1β, and 6, all of which have been implicated in KS development. Our work has identified another potential immune evasion strategy for KSHV and a potential target for immunotherapy of KSHV-derived disease.

Pubmed ID: 29018115 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: P01 CA019014
  • Agency: NIAID NIH HHS, United States
    Id: T32 AI007419
  • Agency: NCI NIH HHS, United States
    Id: P30 CA016086
  • Agency: NIAID NIH HHS, United States
    Id: U19 AI109965
  • Agency: NIGMS NIH HHS, United States
    Id: K12 GM000678

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


BioLegend (tool)

RRID:SCR_001134

Commercial antibody supplier and developer for biomedical research. These products are compatible with use in flow cytometry and mass cytometry, immunoprecipitation and chip, western blotting, immunofluorescence microscopy, and quantitative multiplexing.

View all literature mentions

FlowJo (tool)

RRID:SCR_008520

Software for single-cell flow cytometry analysis. Its functions include management, display, manipulation, analysis and publication of the data stream produced by flow and mass cytometers.

View all literature mentions

Miltenyi Biotec (tool)

RRID:SCR_008984

An Organization portal, Antibody supplier, Service resource,

View all literature mentions