2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Augmentation of intracellular iron using iron sucrose enhances the toxicity of pharmacological ascorbate in colon cancer cells.

Redox biology | 2018

Pharmacological doses (> 1mM) of ascorbate (a.k.a., vitamin C) have been shown to selectively kill cancer cells through a mechanism that is dependent on the generation of H2O2 at doses that are safely achievable in humans using intravenous administration. The process by which ascorbate oxidizes to form H2O2 is thought to be mediated catalytically by redox active metal ions such as iron (Fe). Because intravenous iron sucrose is often administered to colon cancer patients to help mitigate anemia, the current study assessed the ability of pharmacological ascorbate to kill colon cancer cells in the presence and absence of iron sucrose. In vitro survival assays showed that 10mM ascorbate exposure (2h) clonogenically inactivated 40-80% of exponentially growing colon cancer cell lines (HCT116 and HT29). When the H2O2 scavenging enzyme, catalase, was added to the media, or conditionally over-expressed using a doxycycline inducible vector, the toxicity of pharmacological ascorbate was significantly blunted. When colon cancer cells were treated in the presence or absence of 250µM iron sucrose, then rinsed, and treated with 10mM ascorbate, the cells demonstrated increased levels of labile iron that resulted in significantly increased clonogenic cell killing, compared to pharmacological ascorbate alone. Interestingly, when colon cancer cells were treated with iron sucrose for 1h and then 10mM ascorbate was added to the media in the continued presence of iron sucrose, there was no enhancement of toxicity despite similar increases in intracellular labile iron. The combination of iron chelators, deferoxamine and diethylenetriaminepentaacetic acid, significantly inhibited the toxicity of either ascorbate alone or ascorbate following iron sucrose. These observations support the hypothesis that increasing intracellular labile iron pools, using iron sucrose, can be used to increase the toxicity of pharmacological ascorbate in human colon cancer cells by a mechanism involving increased generation of H2O2.

Pubmed ID: 28886484 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: R01 CA184051
  • Agency: NCI NIH HHS, United States
    Id: P01 CA217797
  • Agency: NIEHS NIH HHS, United States
    Id: P30 ES005605
  • Agency: NHLBI NIH HHS, United States
    Id: T35 HL007485
  • Agency: NCI NIH HHS, United States
    Id: R01 CA133114
  • Agency: NCI NIH HHS, United States
    Id: P30 CA086862
  • Agency: NCI NIH HHS, United States
    Id: R01 CA169046
  • Agency: NCI NIH HHS, United States
    Id: T32 CA078586
  • Agency: NCI NIH HHS, United States
    Id: R01 CA182804
  • Agency: NIGMS NIH HHS, United States
    Id: T32 GM007337
  • Agency: NCI NIH HHS, United States
    Id: F30 CA213817

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ATCC (tool)

RRID:SCR_001672

Global nonprofit biological resource center (BRC) and research organization that provides biological products, technical services and educational programs to private industry, government and academic organizations. Its mission is to acquire, authenticate, preserve, develop and distribute biological materials, information, technology, intellectual property and standards for the advancement and application of scientific knowledge. The primary purpose of ATCC is to use its resources and experience as a BRC to become the world leader in standard biological reference materials management, intellectual property resource management and translational research as applied to biomaterial development, standardization and certification. ATCC characterizes cell lines, bacteria, viruses, fungi and protozoa, as well as develops and evaluates assays and techniques for validating research resources and preserving and distributing biological materials to the public and private sector research communities.

View all literature mentions

Addgene (tool)

RRID:SCR_002037

Non-profit plasmid repository dedicated to helping scientists around the world share high-quality plasmids. Facilitates archiving and distributing DNA-based research reagents and associated data to scientists worldwide. Repository contains over 65,000 plasmids, including special collections on CRISPR, fluorescent proteins, and ready-to-use viral preparations. There is no cost for scientists to deposit plasmids, which saves time and money associated with shipping plasmids themselves. All plasmids are fully sequenced for validation and sequencing data is openly available. We handle the appropriate Material Transfer Agreements (MTA) with institutions, facilitating open exchange and offering intellectual property and liability protection for depositing scientists. Furthermore, we curate free educational resources for the scientific community including a blog, eBooks, video protocols, and detailed molecular biology resources.

View all literature mentions

Thermo Fisher Scientific (tool)

RRID:SCR_008452

Commercial vendor and service provider of laboratory reagents and antibodies. Supplier of scientific instrumentation, reagents and consumables, and software services.

View all literature mentions

HT-29 (tool)

RRID:CVCL_0320

Cell line HT-29 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

HCT 116 (tool)

RRID:CVCL_0291

Cell line HCT 116 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions