Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Capturing protein communities by structural proteomics in a thermophilic eukaryote.

Molecular systems biology | 2017

The arrangement of proteins into complexes is a key organizational principle for many cellular functions. Although the topology of many complexes has been systematically analyzed in isolation, their molecular sociology in situ remains elusive. Here, we show that crude cellular extracts of a eukaryotic thermophile, Chaetomium thermophilum, retain basic principles of cellular organization. Using a structural proteomics approach, we simultaneously characterized the abundance, interactions, and structure of a third of the C. thermophilum proteome within these extracts. We identified 27 distinct protein communities that include 108 interconnected complexes, which dynamically associate with each other and functionally benefit from being in close proximity in the cell. Furthermore, we investigated the structure of fatty acid synthase within these extracts by cryoEM and this revealed multiple, flexible states of the enzyme in adaptation to its association with other complexes, thus exemplifying the need for in situ studies. As the components of the captured protein communities are known-at both the protein and complex levels-this study constitutes another step forward toward a molecular understanding of subcellular organization.

Pubmed ID: 28743795 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: Wellcome Trust, United Kingdom
  • Agency: Wellcome Trust, United Kingdom
    Id: 103139
  • Agency: Wellcome Trust, United Kingdom
    Id: 103139/Z/13/Z
  • Agency: Wellcome Trust, United Kingdom
    Id: 203149

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


SGD (tool)

RRID:SCR_004694

A curated database that provides comprehensive integrated biological information for Saccharomyces cerevisiae along with search and analysis tools to explore these data. SGD allows researchers to discover functional relationships between sequence and gene products in fungi and higher organisms. The SGD also maintains the S. cerevisiae Gene Name Registry, a complete list of all gene names used in S. cerevisiae which includes a set of general guidelines to gene naming. Protein Page provides basic protein information calculated from the predicted sequence and contains links to a variety of secondary structure and tertiary structure resources. Yeast Biochemical Pathways allows users to view and search for biochemical reactions and pathways that occur in S. cerevisiae as well as map expression data onto the biochemical pathways. Literature citations are provided where available.

View all literature mentions

NCBI BLAST (tool)

RRID:SCR_004870

Web search tool to find regions of similarity between biological sequences. Program compares nucleotide or protein sequences to sequence databases and calculates statistical significance. Used for identifying homologous sequences.

View all literature mentions

eggNOG (tool)

RRID:SCR_002456

A database of orthologous groups of genes. The orthologous groups are annotated with functional description lines (derived by identifying a common denominator for the genes based on their various annotations), with functional categories (i.e derived from the original COG/KOG categories). eggNOG's database currently counts 1.7 million orthologous groups in 3686 species, covering over 7.7 million proteins (built from 9.6 million proteins). (Jan 30, 2014)

View all literature mentions

Chimera (tool)

RRID:SCR_002959

A Bioconductor package that organizes, annotates, analyses and validates fusions reported by different fusion detection tools. The current implementation can deal with output from bellerophontes, chimeraScan, deFuse, fusionCatcher, FusionFinder, FusionHunter, FusionMap, mapSplice, Rsubread, tophat-fusion, tophat-fusion-post and STAR. The core of Chimera is a fusion data structure that can store fusion events detected with any of the aforementioned tools.

View all literature mentions

Cytoscape (tool)

RRID:SCR_003032

Software platform for complex network analysis and visualization. Used for visualization of molecular interaction networks and biological pathways and integrating these networks with annotations, gene expression profiles and other state data.

View all literature mentions

Program to Reduce Incontinence by Diet and Exercise (tool)

RRID:SCR_009018

Randomized controlled trial being conducted at two clinical centers in the United States to learn more about the effects of weight loss on urinary incontinence. About 330 overweight women aged 30 or older will participate and will be followed for 18 months. Efficacy of weight reduction as a treatment for urinary incontinence will be examined at 6 months following the intensive weight control program, and the sustained impact of the intervention will be examined at 18 months. To increase the maintenance of weight reduction and facilitate evaluation of the enduring impact of weight loss on urinary incontinence, they propose to study a motivation-based weight maintenance program. At the end of the intensive weight control program, women randomized to the weight loss program will be randomized to either a 12-month skill-based maintenance intervention or to a motivation-based maintenance intervention. The maintenance interventions maximize the potential for sustained weight loss and will allow them to determine if long-term weight reduction will produce continued improvement in urinary incontinence.

View all literature mentions

MODELLER (tool)

RRID:SCR_008395

Software tool as Program for Comparative Protein Structure Modelling by Satisfaction of Spatial Restraints. Used for homology or comparative modeling of protein three dimensional structures. User provides alignment of sequence to be modeled with known related structures and MODELLER automatically calculates model containing all non hydrogen atoms.

View all literature mentions