Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Induced Pluripotent Stem Cells: Global Research Trends.

BioResearch open access | 2017

The induced pluripotent stem cell (iPSC) was first described more than 10 years ago and is currently used in various basic science and clinical research fields. The aim of this report is to examine the trends in research using iPSCs over the last 10 years. The 2006-2016 PubMed database was searched using the MeSH term "induced pluripotent stem cells." Only original research articles were selected, with a total of 3323 articles. These were classified according to research theme into reprogramming, differentiation protocols for specific cells and/or tissues, pathophysiological research on diseases, and discovery of new drugs, and then the trends over the years were analyzed. We also focused on 232 research publications on the pathophysiological causes of diseases and drug discovery with impact factor (IF; Thomson Reuters) of six or more. The IF of each article was summed up by year, by main target disease, and by country, and the total IF score was expressed as trends of research. The trends of research activities of reprogramming and differentiation on specific cells and/or tissues reached maxima in 2013/2014. On the other hand, research on pathophysiology and drug discovery increased continuously. The 232 articles with IF ≥6 dealt with neurological, immunological/hematological, cardiovascular, and digestive tract diseases, in that order. The majority of articles were published from the United States, followed by Japan, Germany, and United Kingdom. In conclusion, iPSCs have become a general tool for pathophysiological research on disease and drug discovery.

Pubmed ID: 28736689 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


PubMed (tool)

RRID:SCR_004846

Public bibliographic database that provides access to citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites. PubMed citations and abstracts include fields of biomedicine and health, covering portions of life sciences, behavioral sciences, chemical sciences, and bioengineering. Provides access to additional relevant web sites and links to other NCBI molecular biology resources. Publishers of journals can submit their citations to NCBI and then provide access to full-text of articles at journal web sites using LinkOut.

View all literature mentions

MeSH (tool)

RRID:SCR_004750

A controlled vocabulary thesaurus that consists of sets of terms naming descriptors in a hierarchical structure that permits searching at various levels of specificity. MeSH, in machine-readable form, is provided at no charge via electronic means. MeSH descriptors are arranged in both an alphabetic and a hierarchical structure. At the most general level of the hierarchical structure are very broad headings such as Anatomy or Mental Disorders. More specific headings are found at more narrow levels of the twelve-level hierarchy, such as Ankle and Conduct Disorder. There are 27,149 descriptors in 2014 MeSH. There are also over 218,000 entry terms that assist in finding the most appropriate MeSH Heading, for example, Vitamin C is an entry term to Ascorbic Acid. In addition to these headings, there are more than 219,000 headings called Supplementary Concept Records (formerly Supplementary Chemical Records) within a separate thesaurus. The MeSH thesaurus is used by NLM for indexing articles from 5,400 of the world''''s leading biomedical journals for the MEDLINE/PubMED database. It is also used for the NLM-produced database that includes cataloging of books, documents, and audiovisuals acquired by the Library. Each bibliographic reference is associated with a set of MeSH terms that describe the content of the item. Similarly, search queries use MeSH vocabulary to find items on a desired topic.

View all literature mentions