Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Improved prediction of PARP inhibitor response and identification of synergizing agents through use of a novel gene expression signature generation algorithm.

NPJ systems biology and applications | 2017

Despite rapid advancement in generation of large-scale microarray gene expression datasets, robust multigene expression signatures that are capable of guiding the use of specific therapies have not been routinely implemented into clinical care. We have developed an iterative resampling analysis to predict sensitivity algorithm to generate gene expression sensitivity profiles that predict patient responses to specific therapies. The resultant signatures have a robust capacity to accurately predict drug sensitivity as well as the identification of synergistic combinations. Here, we apply this approach to predict response to PARP inhibitors, and show it can greatly outperforms current clinical biomarkers, including BRCA1/2 mutation status, accurately identifying PARP inhibitor-sensitive cancer cell lines, primary patient-derived tumor cells, and patient-derived xenografts. These signatures were also capable of predicting patient response, as shown by applying a cisplatin sensitivity signature to ovarian cancer patients. We additionally demonstrate how these drug-sensitivity signatures can be applied to identify novel synergizing agents to improve drug efficacy. Tailoring therapeutic interventions to improve patient prognosis is of utmost importance, and our drug sensitivity prediction signatures may prove highly beneficial for patient management.

Pubmed ID: 28649435 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: T32 CA186892
  • Agency: NCI NIH HHS, United States
    Id: R01 CA112291
  • Agency: NCI NIH HHS, United States
    Id: P50 CA217685
  • Agency: NCI NIH HHS, United States
    Id: F32 CA093043
  • Agency: NCI NIH HHS, United States
    Id: R01 CA120960

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


LINCS Connectivity Map (tool)

RRID:SCR_002639

A catalog of gene-expression data collected from human cells treated with chemical compounds and genetic reagents. Computational methods to reduce the number of necessary genomic measurements along with streamlined methodologies enable the current effort to significantly increase the size of the CMap database and along with it, our potential to connect human diseases with the genes that underlie them and the drugs that treat them. The NIH has funded a large expansion of the Connectivity Map dataset through the Library of Integrated Network-based Cellular Signatures (LINCS). The Broad Institute's LINCS center aims to create a first installment of data generation and analysis for the LINCS program. Through these data LINCS intends to accelerate the discovery process by systematically revealing connections between genes/compounds discovered in screens and molecular pathways that underlie disease states.

View all literature mentions

The Cancer Genome Atlas (tool)

RRID:SCR_003193

Project exploring the spectrum of genomic changes involved in more than 20 types of human cancer that provides a platform for researchers to search, download, and analyze data sets generated. As a pilot project it confirmed that an atlas of changes could be created for specific cancer types. It also showed that a national network of research and technology teams working on distinct but related projects could pool the results of their efforts, create an economy of scale and develop an infrastructure for making the data publicly accessible. Its success committed resources to collect and characterize more than 20 additional tumor types. Components of the TCGA Research Network: * Biospecimen Core Resource (BCR); Tissue samples are carefully cataloged, processed, checked for quality and stored, complete with important medical information about the patient. * Genome Characterization Centers (GCCs); Several technologies will be used to analyze genomic changes involved in cancer. The genomic changes that are identified will be further studied by the Genome Sequencing Centers. * Genome Sequencing Centers (GSCs); High-throughput Genome Sequencing Centers will identify the changes in DNA sequences that are associated with specific types of cancer. * Proteome Characterization Centers (PCCs); The centers, a component of NCI's Clinical Proteomic Tumor Analysis Consortium, will ascertain and analyze the total proteomic content of a subset of TCGA samples. * Data Coordinating Center (DCC); The information that is generated by TCGA will be centrally managed at the DCC and entered into the TCGA Data Portal and Cancer Genomics Hub as it becomes available. Centralization of data facilitates data transfer between the network and the research community, and makes data analysis more efficient. The DCC manages the TCGA Data Portal. * Cancer Genomics Hub (CGHub); Lower level sequence data will be deposited into a secure repository. This database stores cancer genome sequences and alignments. * Genome Data Analysis Centers (GDACs) - Immense amounts of data from array and second-generation sequencing technologies must be integrated across thousands of samples. These centers will provide novel informatics tools to the entire research community to facilitate broader use of TCGA data. TCGA is actively developing a network of collaborators who are able to provide samples that are collected retrospectively (tissues that had already been collected and stored) or prospectively (tissues that will be collected in the future).

View all literature mentions

Gene Expression Omnibus (GEO) (tool)

RRID:SCR_007303

Functional genomics data repository supporting MIAME-compliant data submissions. Includes microarray-based experiments measuring the abundance of mRNA, genomic DNA, and protein molecules, as well as non-array-based technologies such as serial analysis of gene expression (SAGE) and mass spectrometry proteomic technology. Array- and sequence-based data are accepted. Collection of curated gene expression DataSets, as well as original Series and Platform records. The database can be searched using keywords, organism, DataSet type and authors. DataSet records contain additional resources including cluster tools and differential expression queries.

View all literature mentions

Gene Expression Omnibus (GEO) (tool)

RRID:SCR_005012

Functional genomics data repository supporting MIAME-compliant data submissions. Includes microarray-based experiments measuring the abundance of mRNA, genomic DNA, and protein molecules, as well as non-array-based technologies such as serial analysis of gene expression (SAGE) and mass spectrometry proteomic technology. Array- and sequence-based data are accepted. Collection of curated gene expression DataSets, as well as original Series and Platform records. The database can be searched using keywords, organism, DataSet type and authors. DataSet records contain additional resources including cluster tools and differential expression queries.

View all literature mentions

CompuSyn (tool)

RRID:SCR_022931

Software tool for single drug and drug combinations pharmacodynamics with automated simulations or dose efffect data analysis from enzymes, receptors, microorganisms, cells, animals and clinical trials.

View all literature mentions

Crl:NU(NCr)-Foxn1nu (tool)

RRID:IMSR_CRL:490

Mus musculus with name Crl:NU(NCr)-Foxn1nu from IMSR.

View all literature mentions