Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

HBx-mediated decrease of AIM2 contributes to hepatocellular carcinoma metastasis.

Molecular oncology | 2017

Tumor metastasis is responsible for the high mortality rates in patients with hepatocellular carcinoma (HCC). Absent in melanoma 2 (AIM2) has been implicated in inflammation and carcinogenesis, although its role in HCC metastasis remains unknown. In the present study, we show that AIM2 protein expression was noticeably reduced in HCC cell lines and clinical samples. A reduction in AIM2 was closely associated with higher serum AFP levels, vascular invasion, poor tumor differentiation, an incomplete tumor capsule and unfavorable postsurgical survival odds. In vitro studies demonstrated that AIM2 expression was modulated by hepatitis B virus X protein (HBx) at transcriptional and post-translational levels. HBx overexpression markedly blocked the expression of AIM2 at mRNA and protein levels by enhancing the stability of Enhancer of zeste homolog 2 (EZH2). Furthermore, HBx interacted with AIM2, resulting in an increase of AIM2 degradation via ubiquitination induction. Functionally, knockdown of AIM2 enhanced cell migration, formation of cell pseudopodium, wound healing and tumor metastasis, whereas reintroduction of AIM2 attenuated these functions. The loss of AIM2 induced the activation of epithelial-mesenchymal transition (EMT). Fibronectin 1 (FN1) was found to be a downstream effector of AIM2, with its expression reversely modulated by AIM2. Silencing of FN1 significantly halted cell migration induced by AIM2 depletion. These data demonstrate that HBx-induced loss of AIM2 is associated with poor outcomes and facilitates HCC metastasis by triggering the EMT process. The results of the present study therefore suggest that AIM2 is a potential prognostic biomarker in hepatitis B virus-related HCC, as well as a possible therapeutic target for tumor metastasis.

Pubmed ID: 28580773 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


FISHER (tool)

RRID:SCR_009181

THIS RESOURCE IS NO LONGER IN SERVICE, documented on February 1st, 2022. Software application for genetic analysis of classical biometric traits like blood pressure or height that are caused by a combination of polygenic inheritance and complex environmental forces. (entry from Genetic Analysis Software)

View all literature mentions

Genomatix Software: Understanding Gene Regulation (tool)

RRID:SCR_008036

Genomatix is a privately held company that offers software, databases, and services aimed at understanding gene regulation at the molecular level representing a central part of systems biology. Its multilayer integrative approach is a working implementation of systems biology principles. Genomatix combines sequence analysis, functional promoter analysis, proprietary genome annotation, promoter sequence databases, comparative genomics, scientific literature data mining, pathway databases, biological network databases, pathway analysis, network analysis, and expression profiling into working solutions and pipelines. It also enables better understanding of biological mechanisms under different conditions and stimuli in the biological context of your data. Some of Genomatix'' most valuable assets are the strong scientific background and the years of experience in research & discovery as well as in development & application of scientific software. Their firsthand knowledge of all the complexities involved in the in-silico analysis of biological data makes them a first-rate partner for all scientific projects involving the evaluation of gene regulatory mechanisms. The Genomatix team has more than a decade of scientific expertise in the successful application of computer aided analysis of gene regulatory networks, which is reflected by more than 150 peer reviewed scientific publications from Genomatix'' scientists More than 35,000 researchers in industry and academia around the world use this technology. The software available in Genomatix are: - GenomatixSuite: GenomatixSuite is our comprehensive software bundle including ElDorado, Gene2Promoter, GEMS Launcher, MatInspector and MatBase. GenomatixSuite PE also includes BiblioSphere Pathway Edition. Chromatin IP Software - RegionMiner: Fast, extensive analysis of genomic regions. - ChipInspector: Discover the real power of your microarray data. Genome Annotation Software - ElDorado: Extended Genome Annotation. - Gene2Promoter: Retrieve & analyze promoters - GPD: The Genomatix Promoter Database, which is now included with Gene2Promoter. Knowledge Mining Software - BiblioSpere : The next level of pathway/genomics analysis. - LitInspector: Literature and pathway analysis for free. Sequence Analysis Software - GEMS Launcher: Our integrated collection of sequence analysis tools. - MalInspector: Search transcription factor binding sites - MatBase: The transcription factor knowledge base. Other (no registration required) Software - DiAlign: Multiple alignment of DNA/protein sequence. - Genomatix tools: Various small tools for sequence statistics, extraction, formatting, etc.

View all literature mentions

Huh-7 (tool)

RRID:CVCL_0336

Cell line Huh-7 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

NU/J (tool)

RRID:IMSR_JAX:002019

Mus musculus with name NU/J from IMSR.

View all literature mentions

HEK293T (tool)

RRID:CVCL_0063

Cell line HEK293T is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions