Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

CdiA Effectors Use Modular Receptor-Binding Domains To Recognize Target Bacteria.

mBio | 2017

Contact-dependent growth inhibition (CDI) systems encode CdiA effectors, which bind to specific receptors on neighboring bacteria and deliver C-terminal toxin domains to suppress target cell growth. Two classes of CdiA effectors that bind distinct cell surface receptors have been identified, but the molecular basis of receptor specificity is not understood. Alignment of BamA-specific CdiAEC93 from Escherichia coli EC93 and OmpC-specific CdiAEC536 from E. coli 536 suggests that the receptor-binding domain resides within a central region that varies between the two effectors. In support of this hypothesis, we find that CdiAEC93 fragments containing residues Arg1358 to Phe1646 bind specifically to purified BamA. Moreover, chimeric CdiAEC93 that carries the corresponding sequence from CdiAEC536 is endowed with OmpC-binding activity, demonstrating that this region dictates receptor specificity. A survey of E. coli CdiA proteins reveals two additional effector classes, which presumably recognize distinct receptors. Using a genetic approach, we identify the outer membrane nucleoside transporter Tsx as the receptor for a third class of CdiA effectors. Thus, CDI systems exploit multiple outer membrane proteins to identify and engage target cells. These results underscore the modularity of CdiA proteins and suggest that novel effectors can be constructed through genetic recombination to interchange different receptor-binding domains and toxic payloads.IMPORTANCE CdiB/CdiA two-partner secretion proteins mediate interbacterial competition through the delivery of polymorphic toxin domains. This process, known as contact-dependent growth inhibition (CDI), requires stable interactions between the CdiA effector protein and specific receptors on the surface of target bacteria. Here, we localize the receptor-binding domain to the central region of E. coli CdiA. Receptor-binding domains vary between CdiA proteins, and E. coli strains collectively encode at least four distinct effector classes. Further, we show that receptor specificity can be altered by exchanging receptor-binding regions, demonstrating the modularity of this domain. We propose that novel CdiA effectors are naturally generated through genetic recombination to interchange different receptor-binding domains and toxin payloads.

Pubmed ID: 28351921 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM117930

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ATCC (tool)

RRID:SCR_001672

Global nonprofit biological resource center (BRC) and research organization that provides biological products, technical services and educational programs to private industry, government and academic organizations. Its mission is to acquire, authenticate, preserve, develop and distribute biological materials, information, technology, intellectual property and standards for the advancement and application of scientific knowledge. The primary purpose of ATCC is to use its resources and experience as a BRC to become the world leader in standard biological reference materials management, intellectual property resource management and translational research as applied to biomaterial development, standardization and certification. ATCC characterizes cell lines, bacteria, viruses, fungi and protozoa, as well as develops and evaluates assays and techniques for validating research resources and preserving and distributing biological materials to the public and private sector research communities.

View all literature mentions

UniProt (tool)

RRID:SCR_002380

Collection of data of protein sequence and functional information. Resource for protein sequence and annotation data. Consortium for preservation of the UniProt databases: UniProt Knowledgebase (UniProtKB), UniProt Reference Clusters (UniRef), and UniProt Archive (UniParc), UniProt Proteomes. Collaboration between European Bioinformatics Institute (EMBL-EBI), SIB Swiss Institute of Bioinformatics and Protein Information Resource. Swiss-Prot is a curated subset of UniProtKB.

View all literature mentions