Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

PSSMHCpan: a novel PSSM-based software for predicting class I peptide-HLA binding affinity.

GigaScience | 2017

Predicting peptide binding affinity with human leukocyte antigen (HLA) is a crucial step in developing powerful antitumor vaccine for cancer immunotherapy. Currently available methods work quite well in predicting peptide binding affinity with HLA alleles such as HLA-A*0201, HLA-A*0101, and HLA-B*0702 in terms of sensitivity and specificity. However, quite a few types of HLA alleles that are present in the majority of human populations including HLA-A*0202, HLA-A*0203, HLA-A*6802, HLA-B*5101, HLA-B*5301, HLA-B*5401, and HLA-B*5701 still cannot be predicted with satisfactory accuracy using currently available methods. Furthermore, currently the most popularly used methods for predicting peptide binding affinity are inefficient in identifying neoantigens from a large quantity of whole genome and transcriptome sequencing data. Here we present a Position Specific Scoring Matrix (PSSM)-based software called PSSMHCpan to accurately and efficiently predict peptide binding affinity with a broad coverage of HLA class I alleles. We evaluated the performance of PSSMHCpan by analyzing 10-fold cross-validation on a training database containing 87 HLA alleles and obtained an average area under receiver operating characteristic curve (AUC) of 0.94 and accuracy (ACC) of 0.85. In an independent dataset (Peptide Database of Cancer Immunity) evaluation, PSSMHCpan is substantially better than the popularly used NetMHC-4.0, NetMHCpan-3.0, PickPocket, Nebula, and SMM with a sensitivity of 0.90, as compared to 0.74, 0.81, 0.77, 0.24, and 0.79. In addition, PSSMHCpan is more than 197 times faster than NetMHC-4.0, NetMHCpan-3.0, PickPocket, sNebula, and SMM when predicting neoantigens from 661 263 peptides from a breast tumor sample. Finally, we built a neoantigen prediction pipeline and identified 117 017 neoantigens from 467 cancer samples of various cancers from TCGA. PSSMHCpan is superior to the currently available methods in predicting peptide binding affinity with a broad coverage of HLA class I alleles.

Pubmed ID: 28327987 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Genomic Data Commons Data Portal (GDC Data Portal) (tool)

RRID:SCR_014514

A unified data repository of the National Cancer Institute (NCI)'s Genomic Data Commons (GDC) that enables data sharing across cancer genomic studies in support of precision medicine. The GDC supports several cancer genome programs at the NCI Center for Cancer Genomics (CCG), including The Cancer Genome Atlas (TCGA), Therapeutically Applicable Research to Generate Effective Treatments (TARGET), and the Cancer Genome Characterization Initiative (CGCI). The GDC Data Portal provides a platform for efficiently querying and downloading high quality and complete data. The GDC also provides a GDC Data Transfer Tool and a GDC API for programmatic access.

View all literature mentions

IMGT/HLA (tool)

RRID:SCR_002971

Database for sequences of the human major histocompatibility complex (HLA) and includes the official sequences for the WHO Nomenclature Committee For Factors of the HLA System. It currently contains 9,310 allele sequences (2013) along with detailed information concerning the material from which the sequence was derived and data on the validation of the sequences. It is established procedure for authors to submit the sequences directly to the IMGT/HLA Database for checking and assignment of an official name prior to publication, this avoids the problems associated with renaming published sequences and the confusion of multiple names for the same sequence. The need for reasonably rapid publication of new HLA allele sequences has necessitated an annual meeting of the WHO Nomenclature Committee for Factors of the HLA System. Additionally they now publish monthly HLA nomenclature updates both in journals and online to provide quick and easy access to new sequence information. The IMGT/HLA Database is part of the international ImMunoGeneTics project. In collaboration with the Imperial Cancer Research Fund (ICRF) and European Bioinformatics Institute (EBI) they have developed an Oracle database to house the HLA sequences in such a way as to allow users to present complex queries about the sequence, sequence features, references, contacts and allele designations to the database via a graphical user interface over the web. The IMGT/HLA Database Submission Tool allows direct submission of sequences to the WHO HLA Nomenclature Committee for Factors of the HLA System. The IMGT/HLA Database provides an FTP site for the retrieval of sequences in a number of pre-formatted files.

View all literature mentions

SYFPEITHI: A Database for MHC Ligands and Peptide Motifs (tool)

RRID:SCR_013182

SYFPEITHI is a database comprising more than 7000 peptide sequences known to bind class I and class II MHC molecules. The entries are compiled from published reports only. It contains a collection of MHC class I and class II ligands and peptide motifs of humans and other species, such as apes, cattle, chicken, and mouse, for example, and is continuously updated. Searches for MHC alleles, MHC motifs, natural ligands, T-cell epitopes, source proteins/organisms and references are possible. Hyperlinks to the EMBL and PubMed databases are included. In addition, ligand predictions are available for a number of MHC allelic products. The database is based on previous publications on T-cell epitopes and MHC ligands. It contains information on: -Peptide sequences -anchor positions -MHC specificity -source proteins, source organisms -publication references Since the number of motifs continuously increases, it was necessary to set up a database which facilitates the search for peptides and allows the prediction of T-cell epitopes. The prediction is based on published motifs (pool sequencing, natural ligands) and takes into consideration the amino acids in the anchor and auxiliary anchor positions, as well as other frequent amino acids. The score is calculated according to the following rules: The amino acids of a certain peptide are given a specific value depending on whether they are anchor, auxiliary anchor or preferred residue. Ideal anchors will be given 10 points, unusual anchors 6-8 points, auxiliary anchors 4-6 and preferred residues 1-4 points. Amino acids that are regarded as having a negative effect on the binding ability are given values between -1 and -3. Sponsors: SYFPEITHI is supported by DFG-Sonderforschungsbereich 685 and theEuropean Union: EU BIOMED CT95-1627, BIOTECH CT95-0263, and EU QLQ-CT-1999-00713.

View all literature mentions

ANNOVAR (tool)

RRID:SCR_012821

An efficient software tool to utilize update-to-date information to functionally annotate genetic variants detected from diverse genomes (including human genome hg18, hg19, as well as mouse, worm, fly, yeast and many others). Given a list of variants with chromosome, start position, end position, reference nucleotide and observed nucleotides, ANNOVAR can perform: 1. gene-based annotation. 2. region-based annotation. 3. filter-based annotation. 4. other functionalities. (entry from Genetic Analysis Software)

View all literature mentions