Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Dietary Flavonoids, CYP1A1 Genetic Variants, and the Risk of Colorectal Cancer in a Korean population.

Scientific reports | 2017

The role of dietary flavonoid intake in colorectal carcinogenesis might differ according to flavonoid subclasses and individual genetic variants related to carcinogen metabolism. Therefore, we examined whether greater dietary intake of flavonoid subclasses was associated with a lower risk of colorectal cancer and whether CYP1A1 genetic variants altered this association. A semi-quantitative food frequency questionnaire was used to assess the dietary intake of six flavonoid subclasses (flavonols, flavones, flavanones, flavan-3-ols, anthocyanidins, and isoflavones) in 923 patients with colorectal cancer and 1,846 controls; furthermore, CYP1A1 genetic variants (rs4646903 and rs1048943) were genotyped. Among the subclasses of flavonoids, higher intake of flavonols and flavan-3-ols showed a stronger association with a reduced risk of colorectal cancer after adjusting for potential confounding factors. Carriers of the CYP1A1 rs4646903 CC homozygous variant showed a reduced risk of rectal cancer compared with that in TT carriers. The inverse association between dietary flavonol intake and colorectal cancer risk was stronger among carriers of the CC homozygous variant than among T allele carriers (P for interaction = 0.02), particularly for rectal cancer (P for interaction = 0.005). In conclusion, the effect of dietary flavonoid intake on colorectal cancer risk differs according to flavonoid subclasses and CYP1A1 genetic variants.

Pubmed ID: 28273931 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


QUANTO (tool)

RRID:SCR_009084

Software program that computes sample size or power for association studies of genes, environmental factors, gene-environment interaction, or gene-gene interaction. Available study designs for a disease (binary) outcome include the unmatched case-control, matched case-control, case-sibling, case-parent, and case-only designs. Study designs for a quantitative tra it include independent individuals and case parent designs. Quanto is a 32-bit Windows application requiring Windows 95, 98, NT, 2000, ME or XP to run. The graphical user interface allows th e user to easily change the model and view the results without having to edit an input file and rerun the program for every model. The results of a session are stored to a log file. This log can be printed or saved to a file for reviewing at a later date. An option is included to create a text file of the log that can be imported into other documents. (entry from Genetic Analysis Software)

View all literature mentions

Qiagen BioRobot M48 (tool)

RRID:SCR_020412

Automated nucleic acid purification workstation with liquid handling capabilities that purifies the DNA via magnetic separation within the pipette tips. It's pipettor head contains 6 syringe pumps that dispense 25-1000 microliters at a time.

View all literature mentions