2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

ACTH Action on Messenger RNA Stability Mechanisms.

Frontiers in endocrinology | 2017

The regulation of mRNA stability has emerged as a critical control step in dynamic gene expression. This process occurs in response to modifications of the cellular environment, including hormonal variations, and regulates the expression of subsets of proteins whose levels need to be rapidly adjusted. Modulation of messenger RNA stability is usually mediated by stabilizing or destabilizing RNA-binding proteins (RNA-BP) that bind to the 3'-untranslated region regulatory motifs, such as AU-rich elements (AREs). Destabilizing ARE-binding proteins enhance the decay of their target transcripts by recruiting the mRNA decay machineries. Failure of such mechanisms, in particular misexpression of RNA-BP, has been linked to several human diseases. In the adrenal cortex, the expression and activity of mRNA stability regulatory proteins are still understudied. However, ACTH- or cAMP-elicited changes in the expression/phosphorylation status of the major mRNA-destabilizing protein TIS11b/BRF1 or in the subcellular localization of the stabilizing protein Human antigen R have been reported. They suggest that this level of regulation of gene expression is also important in endocrinology.

Pubmed ID: 28163695 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Adenylate Uridylate-rich-Rich Element-Containing mRNA Database (tool)

RRID:SCR_013107

Database that contains the complete entries of human ARE-containing full-length mRNAs.
ARED is further clustered into five groups depending on the number of motifs in the ARE stretch. Groups 1-4 contain five, four, three and two pentameric (AUUUA) repeats, respectively, while Group 5 contains only one repeat within the 13-bp pattern. Clustering was performed in such a way that, for example, Group 1 included not only exact five or more continuous ARE pentamers but also those with 10% ambiguity, so that a stretch of NUUUAUUUAUUUAUUUAUUUN would fall in this category. This process was verified by a phylogenic tree relationship using Clustal-W alignment of ARE stretches and their variations. As could be expected, this analysis showed that the lower the number of ARE motifs in a group, the higher the number of sequences that were included, and apparently the more functionally diverse the corresponding ARE-genes.

View all literature mentions