Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Genome-wide divergence, haplotype distribution and population demographic histories for Gossypium hirsutum and Gossypium barbadense as revealed by genome-anchored SNPs.

Scientific reports | 2017

Use of 10,129 singleton SNPs of known genomic location in tetraploid cotton provided unique opportunities to characterize genome-wide diversity among 440 Gossypium hirsutum and 219 G. barbadense cultivars and landrace accessions of widespread origin. Using the SNPs distributed genome-wide, we examined genetic diversity, haplotype distribution and linkage disequilibrium patterns in the G. hirsutum and G. barbadense genomes to clarify population demographic history. Diversity and identity-by-state analyses have revealed little sharing of alleles between the two cultivated allotetraploid genomes, with a few exceptions that indicated sporadic gene flow. We found a high number of new alleles, representing increased nucleotide diversity, on chromosomes 1 and 2 in cultivated G. hirsutum as compared with low nucleotide diversity on these chromosomes in landrace G. hirsutum. In contrast, G. barbadense chromosomes showed negative Tajima's D on several chromosomes for both cultivated and landrace types, which indicate that speciation of G. barbadense itself, might have occurred with relatively narrow genetic diversity. The presence of conserved linkage disequilibrium (LD) blocks and haplotypes between G. hirsutum and G. barbadense provides strong evidence for comparable patterns of evolution in their domestication processes. Our study illustrates the potential use of population genetic techniques to identify genomic regions for domestication.

Pubmed ID: 28128280 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Sickle (tool)

RRID:SCR_006800

Software tool for windowed adaptive trimming for fastq files using quality. Supports quality values like Illumina, Solexa, and Sanger. Takes the quality values and slides a window across them whose length is 0.1 times the length of the read.

View all literature mentions

QIAGEN (tool)

RRID:SCR_008539

A commercial organization which provides assay technologies to isolate DNA, RNA, and proteins from any biological sample. Assay technologies are then used to make specific target biomolecules, such as the DNA of a specific virus, visible for subsequent analysis.

View all literature mentions

SAMTOOLS (tool)

RRID:SCR_002105

Original SAMTOOLS package has been split into three separate repositories including Samtools, BCFtools and HTSlib. Samtools for manipulating next generation sequencing data used for reading, writing, editing, indexing,viewing nucleotide alignments in SAM,BAM,CRAM format. BCFtools used for reading, writing BCF2,VCF, gVCF files and calling, filtering, summarising SNP and short indel sequence variants. HTSlib used for reading, writing high throughput sequencing data.

View all literature mentions

GSNAP (tool)

RRID:SCR_005483

Software to align single and paired end reads as short as 14 nt and of arbitrarily long length. Can detect short and long distance splicing, including interchromosomal splicing, in individual reads, using probabilistic models or database of known splice sites. Permits SNP-tolerant alignment to reference space of all possible combinations of major and minor alleles, and can align reads from bisulfite-treated DNA for study of methylation state.

View all literature mentions

BioJava Project (tool)

RRID:SCR_007180

Project dedicated to providing Java framework for processing biological data. It provides analytical and statistical routines, parsers for common file formats and allows the manipulation of sequences and 3D structures. The goal of the biojava project is to facilitate rapid application development for bioinformatics. Sponsor: BioJava is not formally funded by any grants. Through the OBF they have received sponsorship from Sun Microsystems, Apple Computers and NESCent. The initial development of the phylogenetics module was undertaken as a Google Summer of Code 2007 project in collaboration with NESCent.

View all literature mentions

TASSEL (tool)

RRID:SCR_012837

Software package which performs a variety of genetic analyses including association mapping, diversity estimation and calculating linkage disequilibrium. The association analysis between genotypes and phenotypes can be performed by either a general linear model or a mixed linear model. The general linear model now allows users to analyze complex field designs, environmental interactions, and epistatic interactions. The mixed model is specially designed to handle polygenic effects at multiple levels of relatedness including pedigree information. These new analyses should permit association analysis in a wide range plant and animal species. (entry from Genetic Analysis Software)

View all literature mentions

Golden Helix Incorporated (tool)

RRID:SCR_012191

Specializes in sequence and array-based SNP and copy number analysis, genetic association software, and analytic services. Their technologies empower scientists to determine the genetic causes of disease, transform drug discovery, develop genetic diagnostics, and advance the quest for personalized medicine.

View all literature mentions