Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Effect of Lead Nanoparticles Inhalation on Bone Calcium Sensing Receptor, Hydroxyapatite Crystal and Receptor Activator of Nuclear Factor-Kappa B in Rats.

Acta informatica medica : AIM : journal of the Society for Medical Informatics of Bosnia & Herzegovina : casopis Drustva za medicinsku informatiku BiH | 2016

This study aimed to investigate whether Pb nanoparticle exposure affects the bone calcium sensing receptor (CaSR), hydroxyapatite crystal, and receptor activator of nuclear factor-kappa B (RANK) in rats exposed to subchronic and chronic inhalation. Thirty two rats were randomly divided into eight groups. One group is a non-exposed group. While three groups were exposed to nanoparticles Pb at the following doses 6.25; 12.5; or 25 mg/m3 an hour daily for 28 days. Another three groups were exposed to nanoparticles Pb at following doses 6.25; 12.5; and 25 mg/m3 one hour daily for 6 months. The expression of trabecular CaSR was significantly decreased at the all doses subchronic exposure compared to the control group (P < 0.05). The CaSR expression significantly decreased in second and third doses subchronic exposure groups compared to the control groups (P < 0.05). With subchronic exposure, the crystal size was increased in second dose group and decreased in lowest and highest doses compared to the control (untreated) group. The crystal size and c-axis were decreased in all dose chronic exposures compared to the control (untreated) group. The expression of cortical RANK was significantly lower at the two lowest dose chronic exposures compared to the control group (P < 0.05). In conclusion, Pb nanoparticle inhibit hydroxyapatite crystal growth at least a part via down regulation of CaSR and RANK.

Pubmed ID: 28077890 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


WI (tool)

RRID:RGD_13508588

Rattus norvegicus with name WI from RGD.

View all literature mentions