Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

PETPVE12: an SPM toolbox for Partial Volume Effects correction in brain PET - Application to amyloid imaging with AV45-PET.

NeuroImage | 2017

Positron emission tomography (PET) allows detecting molecular brain changes in vivo. However, the accuracy of PET is limited by partial volume effects (PVE) that affects quantitative analysis and visual interpretation of the images. Although PVE-correction methods have been shown to effectively increase the correspondence of the measured signal with the true regional tracer uptake, these procedures are still not commonly applied, neither in clinical nor in research settings. Here, we present an implementation of well validated PVE-correction procedures as a SPM toolbox, PETPVE12, for automated processing. We demonstrate its utility by a comprehensive analysis of the effects of PVE-correction on amyloid-sensitive AV45-PET data from 85 patients with Alzheimer's disease (AD) and 179 cognitively normal (CN) elderly. Effects of PVE-correction on global cortical standard uptake value ratios (SUVR) and the power of diagnostic group separation were assessed for the region-wise geometric transfer matrix method (PVEc-GTM), as well as for the 3-compartmental voxel-wise "Müller-Gärtner" method (PVEc-MG). Both PVE-correction methods resulted in decreased global cortical SUVRs in the low to middle range of SUVR values, and in increased global cortical SUVRs at the high values. As a consequence, average SUVR of the CN group was reduced, whereas average SUVR of the AD group was increased by PVE-correction. These effects were also reflected in increased accuracies of group discrimination after PVEc-GTM (AUC=0.86) and PVEc-MG (AUC=0.89) compared to standard non-corrected SUVR (AUC=0.84). Voxel-wise analyses of PVEc-MG corrected data also demonstrated improved detection of regionally increased AV45 SUVR values in AD patients. These findings complement the growing evidence for a beneficial effect of PVE-correction in quantitative analysis of amyloid-sensitive PET data. The novel PETPVE12 toolbox significantly facilitates the application of PVE-correction, particularly within SPM-based processing pipelines. This is expected to foster the use of PVE-correction in brain PET for more widespread use. The toolbox is freely available at http://www.fil.ion.ucl.ac.uk/spm/ext/#PETPVE12.

Pubmed ID: 28039094 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIA NIH HHS, United States
    Id: U01 AG024904
  • Agency: CIHR, Canada

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ADNI - Alzheimer's Disease Neuroimaging Initiative (tool)

RRID:SCR_003007

Database of the results of the ADNI study. ADNI is an initiative to develop biomarker-based methods to detect and track the progression of Alzheimer's disease (AD) that provides access to qualified scientists to their database of imaging, clinical, genomic, and biomarker data.

View all literature mentions

Analysis of Functional NeuroImages (tool)

RRID:SCR_005927

Set of (mostly) C programs that run on X11+Unix-based platforms (Linux, Mac OS X, Solaris, etc.) for processing, analyzing, and displaying functional MRI (FMRI) data defined over 3D volumes and over 2D cortical surface meshes. AFNI is freely distributed as source code plus some precompiled binaries.

View all literature mentions

SPM (tool)

RRID:SCR_007037

Software package for analysis of brain imaging data sequences. Sequences can be a series of images from different cohorts, or time-series from same subject. Current release is designed for analysis of fMRI, PET, SPECT, EEG and MEG.

View all literature mentions