2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Graph Theoretic and Motif Analyses of the Hippocampal Neuron Type Potential Connectome.

eNeuro | 2016

We computed the potential connectivity map of all known neuron types in the rodent hippocampal formation by supplementing scantly available synaptic data with spatial distributions of axons and dendrites from the open-access knowledge base Hippocampome.org. The network that results from this endeavor, the broadest and most complete for a mammalian cortical region at the neuron-type level to date, contains more than 3200 connections among 122 neuron types across six subregions. Analyses of these data using graph theory metrics unveil the fundamental architectural principles of the hippocampal circuit. Globally, we identify a highly specialized topology minimizing communication cost; a modular structure underscoring the prominence of the trisynaptic loop; a core set of neuron types serving as information-processing hubs as well as a distinct group of particular antihub neurons; a nested, two-tier rich club managing much of the network traffic; and an innate resilience to random perturbations. At the local level, we uncover the basic building blocks, or connectivity patterns, that combine to produce complex global functionality, and we benchmark their utilization in the circuit relative to random networks. Taken together, these results provide a comprehensive connectivity profile of the hippocampus, yielding novel insights on its functional operations at the computationally crucial level of neuron types.

Pubmed ID: 27896314 RIS Download

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


NEURON (tool)

RRID:SCR_005393

NEURON is a simulation environment for modeling individual neurons and networks of neurons. It provides tools for conveniently building, managing, and using models in a way that is numerically sound and computationally efficient. It is particularly well-suited to problems that are closely linked to experimental data, especially those that involve cells with complex anatomical and biophysical properties. NEURON has benefited from judicious revision and selective enhancement, guided by feedback from the growing number of neuroscientists who have used it to incorporate empirically-based modeling into their research strategies. NEURON's computational engine employs special algorithms that achieve high efficiency by exploiting the structure of the equations that describe neuronal properties. It has functions that are tailored for conveniently controlling simulations, and presenting the results of real neurophysiological problems graphically in ways that are quickly and intuitively grasped. Instead of forcing users to reformulate their conceptual models to fit the requirements of a general purpose simulator, NEURON is designed to let them deal directly with familiar neuroscience concepts. Consequently, users can think in terms of the biophysical properties of membrane and cytoplasm, the branched architecture of neurons, and the effects of synaptic communication between cells. * helps users focus on important biological issues rather than purely computational concerns * has a convenient user interface * has a user-extendable library of biophysical mechanisms * has many enhancements for efficient network modeling * offers customizable initialization and simulation flow control * is widely used in neuroscience research by experimentalists and theoreticians * is well-documented and actively supported * is free, open source, and runs on (almost) everything

View all literature mentions

Brain Connectivity Toolbox (software resource)

RRID:SCR_004841

A large selection of complex network measures in Matlab that are increasingly used to characterize structural and functional brain connectivity datasets. Several people have contributed to the toolbox, and if you wish to contribute with a new function or set of functions, please contact Olaf Sporns. All efforts have been made to avoid errors, but users are strongly urged to independently verify the accuracy and suitability of toolbox functions for the chosen application. Please report bugs or substantial improvements.

View all literature mentions

Hippocampome.org (data or information resource)

RRID:SCR_009023

A curated knowledge base of the circuitry of the hippocampus of normal adult, or adolescent, rodents at the mesoscopic level of neuronal types. Knowledge concerning dentate gyrus, CA3, CA2, CA1, subiculum, and entorhinal cortex is distilled from published evidence and is continuously updated as new information becomes available. Each reported neuronal property is documented with a pointer to, and excerpt from, relevant published evidence, such as citation quotes or illustrations. Please note: This is an alpha-testing site. The content is still being vetted for accuracy and has not yet undergone peer-review. As such, it may contain inaccuracies and should not (yet) be trusted as a scholarly resource. The content does not yet appear uniformly across all combinations of browsers and screen resolutions.

View all literature mentions