Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Variant Exported Blood-Stage Proteins Encoded by Plasmodium Multigene Families Are Expressed in Liver Stages Where They Are Exported into the Parasitophorous Vacuole.

PLoS pathogens | 2016

Many variant proteins encoded by Plasmodium-specific multigene families are exported into red blood cells (RBC). P. falciparum-specific variant proteins encoded by the var, stevor and rifin multigene families are exported onto the surface of infected red blood cells (iRBC) and mediate interactions between iRBC and host cells resulting in tissue sequestration and rosetting. However, the precise function of most other Plasmodium multigene families encoding exported proteins is unknown. To understand the role of RBC-exported proteins of rodent malaria parasites (RMP) we analysed the expression and cellular location by fluorescent-tagging of members of the pir, fam-a and fam-b multigene families. Furthermore, we performed phylogenetic analyses of the fam-a and fam-b multigene families, which indicate that both families have a history of functional differentiation unique to RMP. We demonstrate for all three families that expression of family members in iRBC is not mutually exclusive. Most tagged proteins were transported into the iRBC cytoplasm but not onto the iRBC plasma membrane, indicating that they are unlikely to play a direct role in iRBC-host cell interactions. Unexpectedly, most family members are also expressed during the liver stage, where they are transported into the parasitophorous vacuole. This suggests that these protein families promote parasite development in both the liver and blood, either by supporting parasite development within hepatocytes and erythrocytes and/or by manipulating the host immune response. Indeed, in the case of Fam-A, which have a steroidogenic acute regulatory-related lipid transfer (START) domain, we found that several family members can transfer phosphatidylcholine in vitro. These observations indicate that these proteins may transport (host) phosphatidylcholine for membrane synthesis. This is the first demonstration of a biological function of any exported variant protein family of rodent malaria parasites.

Pubmed ID: 27851824 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: Wellcome Trust, United Kingdom
  • Agency: Wellcome Trust, United Kingdom
    Id: 095836/Z/1/Z

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


PlasmoDB (tool)

RRID:SCR_013331

Functional genomic database for malaria parasites. Database for Plasmodium spp. Provides resource for data analysis and visualization in gene-by-gene or genome-wide scale. PlasmoDB 5.5 contains annotated genomes, evidence of transcription, proteomics evidence, protein function evidence, population biology and evolution data. Data can be queried by selecting from query grid or drop down menus. Results can be combined with each other on query history page. Search results can be downloaded with associated functional data and registered users can store their query history for future retrieval or analysis.Key community database for malaria researchers, intersecting many types of laboratory and computational data, aggregated by gene.

View all literature mentions

GeneDB (tool)

RRID:SCR_002774

Database of genomes at various stages of completion, from early access to partial genomes with automatic annotation through to complete genomes with extensive manual curation. Its primary goals are: 1) to provide reliable access to the latest sequence data and annotation/curation for the whole range of organisms sequenced by the Pathogen group, and 2) to develop the website and other tools to aid the community in accessing and obtaining the maximum value from these data.

View all literature mentions

Clustal W2 (tool)

RRID:SCR_002909

THIS RESOURCE IS NO LONGER IN SERVICE, documented on January 19, 2022. Command line version of multiple sequence alignment program Clustal for DNA or proteins. Alignment is progressive and considers sequence redundancy. No longer being maintained. Please consider using Clustal Omega instead which accepts nucleic acid or protein sequences in multiple sequence formats NBRF/PIR, EMBL/UniProt, Pearson (FASTA), GDE, ALN/ClustalW, GCG/MSF, RSF.

View all literature mentions

RAxML (tool)

RRID:SCR_006086

Software program for phylogenetic analyses of large datasets under maximum likelihood.

View all literature mentions

MrBayes (tool)

RRID:SCR_012067

THIS RESOURCE IS NO LONGER IN SERVICE.Documented on February 28,2023. Software program for Bayesian inference and model choice across a wide range of phylogenetic and evolutionary models.

View all literature mentions

Huh-7 (tool)

RRID:CVCL_0336

Cell line Huh-7 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

Swiss nude (tool)

RRID:MGI:5649767

laboratory mouse with name Swiss nude from MGI.

View all literature mentions

Crl:OF1 (tool)

RRID:IMSR_CRL:612

Mus musculus with name Crl:OF1 from IMSR.

View all literature mentions

WI (tool)

RRID:RGD_13508588

Rattus norvegicus with name WI from RGD.

View all literature mentions