Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The Environment Shapes the Inner Vestibule of LeuT.

PLoS computational biology | 2016

Human neurotransmitter transporters are found in the nervous system terminating synaptic signals by rapid removal of neurotransmitter molecules from the synaptic cleft. The homologous transporter LeuT, found in Aquifex aeolicus, was crystallized in different conformations. Here, we investigated the inward-open state of LeuT. We compared LeuT in membranes and micelles using molecular dynamics simulations and lanthanide-based resonance energy transfer (LRET). Simulations of micelle-solubilized LeuT revealed a stable and widely open inward-facing conformation. However, this conformation was unstable in a membrane environment. The helix dipole and the charged amino acid of the first transmembrane helix (TM1A) partitioned out of the hydrophobic membrane core. Free energy calculations showed that movement of TM1A by 0.30 nm was driven by a free energy difference of ~15 kJ/mol. Distance measurements by LRET showed TM1A movements, consistent with the simulations, confirming a substantially different inward-open conformation in lipid bilayer from that inferred from the crystal structure.

Pubmed ID: 27835643 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: Austrian Science Fund FWF, Austria
    Id: F 3519
  • Agency: Austrian Science Fund FWF, Austria
    Id: F 3510
  • Agency: Austrian Science Fund FWF, Austria
    Id: W 1232
  • Agency: Austrian Science Fund FWF, Austria
    Id: F 3524
  • Agency: Austrian Science Fund FWF, Austria
    Id: F 3506

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


WHAM (tool)

RRID:SCR_005497

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. High-throughput sequence alignment tool that aligns short DNA sequences (reads) to the whole human genome at a rate of over 1500 million 60bps reads per hour, which is one to two orders of magnitudes faster than the leading state-of-the-art techniques. Feature list for the current version (v 0.1.5) of WHAM: * Supports paired-end reads * Supports up to 5 errores * Supports alignments with gaps * Supports quality scores for filtering invalid alignments, and sorting valid alignments * finds ALL valid alignments * Supports multi-threading * Supports rich reporting modes * Supports SAM format output

View all literature mentions

MODELLER (tool)

RRID:SCR_008395

Software tool as Program for Comparative Protein Structure Modelling by Satisfaction of Spatial Restraints. Used for homology or comparative modeling of protein three dimensional structures. User provides alignment of sequence to be modeled with known related structures and MODELLER automatically calculates model containing all non hydrogen atoms.

View all literature mentions