Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Systemic corazonin signalling modulates stress responses and metabolism in Drosophila.

Open biology | 2016

Stress triggers cellular and systemic reactions in organisms to restore homeostasis. For instance, metabolic stress, experienced during starvation, elicits a hormonal response that reallocates resources to enable food search and readjustment of physiology. Mammalian gonadotropin-releasing hormone (GnRH) and its insect orthologue, adipokinetic hormone (AKH), are known for their roles in modulating stress-related behaviour. Here we show that corazonin (Crz), a peptide homologous to AKH/GnRH, also alters stress physiology in Drosophila The Crz receptor (CrzR) is expressed in salivary glands and adipocytes of the liver-like fat body, and CrzR knockdown targeted simultaneously to both these tissues increases the fly's resistance to starvation, desiccation and oxidative stress, reduces feeding, alters expression of transcripts of Drosophila insulin-like peptides (DILPs), and affects gene expression in the fat body. Furthermore, in starved flies, CrzR-knockdown increases circulating and stored carbohydrates. Thus, our findings indicate that elevated systemic Crz signalling during stress coordinates increased food intake and diminished energy stores to regain metabolic homeostasis. Our study suggests that an ancient stress-peptide in Urbilateria evolved to give rise to present-day GnRH, AKH and Crz signalling systems.

Pubmed ID: 27810969 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


FlyAtlas: the Drosophila gene expression atlas (tool)

RRID:SCR_005032

FlyAtlas gives you a quick answer to the question: where is my gene of interest expressed/enriched in the adult fly? For each gene and tissue, you''re given the mRNA SIGNAL (how abundant the mRNA is), the mRNA ENRICHMENT (compared to whole flies), and the Affymetrix PRESENT CALL (out of 4 arrays, how many times it was detectably expressed). The dataset so far comprises 44 Affymetrix Dros2 expression arrays, each mapping the expression of 18770 transcripts - corresponding to the vast majority of known Drosophila genes. The dataset thus contains over 822800 separate datapoints. This website is intended to make the data easily accessible and comprehensible to mere mortals. FlyAtlas provides the most comprehensive view yet of expression in multiple tissues of Drosophila melanogaster. Meta-analysis of the data shows that a significant fraction of the genome is expressed with great tissue specificity in the adult, demonstrating the need for the functional genomic community to embrace a wide range of functional phenotypes. Well-known developmental genes are often reused in surprising tissues in the adult, suggesting new functions. The homologs of many human genetic disease loci show selective expression in the Drosophila tissues analogous to the affected human tissues, providing a useful filter for potential candidate genes. Additionally, the contributions of each tissue to the whole-fly array signal can be calculated, demonstrating the limitations of whole-organism approaches to functional genomics and allowing modeling of a simple tissue fractionation procedure that should improve detection of weak or tissue-specific signals.

View all literature mentions

Zeiss LSM 800 with Airyscan Microscope (tool)

RRID:SCR_015963

Compact confocal microscope with highly sensitive GaAsP detection and fast linear scanning. The airyscan system allows capture images with high sensitivity and superresolution compared with conventional confocal microscope.

View all literature mentions