Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Porcine Zygote Injection with Cas9/sgRNA Results in DMD-Modified Pig with Muscle Dystrophy.

International journal of molecular sciences | 2016

Dystrophinopathy, including Duchenne muscle dystrophy (DMD) and Becker muscle dystrophy (BMD) is an incurable X-linked hereditary muscle dystrophy caused by a mutation in the DMD gene in coding dystrophin. Advances in further understanding DMD/BMD for therapy are expected. Studies on mdx mice and dogs with muscle dystrophy provide limited insight into DMD disease mechanisms and therapeutic testing because of the different pathological manifestations. Miniature pigs share similar physiology and anatomy with humans and are thus an excellent animal model of human disease. Here, we successfully achieved precise DMD targeting in Chinese Diannan miniature pigs by co-injecting zygotes with Cas9 mRNA and sgRNA targeting DMD. Two piglets were obtained after embryo transfer, one of piglets was identified as DMD-modified individual via traditional cloning, sequencing and T7EN1 cleavage assay. An examination of targeting rates in the DMD-modified piglet revealed that sgRNA:Cas9-mediated on-target mosaic mutations were 70% and 60% of dystrophin alleles in skeletal and smooth muscle, respectively. Meanwhile, no detectable off-target mutations were found, highlighting the high specificity of genetic modification using CRISPR/Cas9. The DMD-modified piglet exhibited degenerative and disordered phenotypes in skeletal and cardiac muscle, and declining thickness of smooth muscle in the stomach and intestine. In conclusion, we successfully generated myopathy animal model by modifying the DMD via CRISPR/Cas9 system in a miniature pig.

Pubmed ID: 27735844 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


GE Healthcare (tool)

RRID:SCR_000004

A commercial antibody supplier and provider of various services.

View all literature mentions

Ambion Inc. (tool)

RRID:SCR_008406

A division of Applied Biosystems selling products for the isolation, detection, quantification, amplification, and characterization of RNA.

View all literature mentions

SeqMap (tool)

RRID:SCR_005495

A software tool for mapping large amount of oligonucleotide to the genome. It is designed for finding all the places in a genome where an oligonucleotide could potentially come from. SeqMap can efficiently map as many as dozens of millions of short sequences to a genome of several billions of nucleotides. While doing the mapping, several mutations as well as insertions / deletions of the nucleotide bases in the sequences can be tolerated and furthermore detected. Various input and output formats are supported, as well as many command line options for tuning almost every steps in the mapping process. A typical mapping can be done in a few hours on an ordinary PC.

View all literature mentions