Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Hydrogen peroxide triggers a novel alternative splicing of arsenic (+3 oxidation state) methyltransferase gene.

Biochemical and biophysical research communications | 2016

We previously reported that two splicing variants of human AS3MT mRNA, exon-3 skipping form (Δ3) and exons-4 and -5 skipping form (Δ4,5), were detected in HepG2 cells and that both variants lacked arsenic methylation activity (Sumi et al., 2011). Here we studied whether hydrogen peroxide (H2O2) triggers alternative splicing of AS3MT mRNA. The results showed that exposure of HepG2 cells to H2O2 resulted in increased levels of a novel spliced form skipping exon-3 to exon-10 (Δ3-10) in an H2O2-concentration-dependent manner, although no change was detected in the mRNA levels of Δ3 AS3MT. We found decreased protein levels of serine/arginine-rich 40 (SRp40), which we determined to be a candidate splice factor for controlling the splicing of AS3MT mRNA. We next compared the amounts of methylated arsenic metabolites between control and H2O2-exposed HepG2 cells after the addition of arsenite as a substance. The results showed lower levels of methylated arsenic metabolites in HepG2 cells exposed to H2O2. These data suggest that the splicing of AS3MT pre-mRNA was disconcerted by oxidative stress and that abnormal alternative splicing of AS3MT mRNA may affect arsenic methylation ability.

Pubmed ID: 27721063 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Cell Signaling Technology (tool)

RRID:SCR_004431

Privately held company that develops and produces antibodies, ELISA kits, ChIP kits, proteomic kits, and other related reagents used to study cell signaling pathways that impact human health.

View all literature mentions