Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint.

PLoS genetics | 2016

The Greatwall kinase/Mastl is an essential gene that indirectly inhibits the phosphatase activity toward mitotic Cdk1 substrates. Here we show that although Mastl knockout (MastlNULL) MEFs enter mitosis, they progress through mitosis without completing cytokinesis despite the presence of misaligned chromosomes, which causes chromosome segregation defects. Furthermore, we uncover the requirement of Mastl for robust spindle assembly checkpoint (SAC) maintenance since the duration of mitotic arrest caused by microtubule poisons in MastlNULL MEFs is shortened, which correlates with premature disappearance of the essential SAC protein Mad1 at the kinetochores. Notably, MastlNULL MEFs display reduced phosphorylation of a number of proteins in mitosis, which include the essential SAC kinase MPS1. We further demonstrate that Mastl is required for multi-site phosphorylation of MPS1 as well as robust MPS1 kinase activity in mitosis. In contrast, treatment of MastlNULL cells with the phosphatase inhibitor okadaic acid (OKA) rescues the defects in MPS1 kinase activity, mislocalization of phospho-MPS1 as well as Mad1 at the kinetochore, and premature SAC silencing. Moreover, using in vitro dephosphorylation assays, we demonstrate that Mastl promotes persistent MPS1 phosphorylation by inhibiting PP2A/B55-mediated MPS1 dephosphorylation rather than affecting Cdk1 kinase activity. Our findings establish a key regulatory function of the Greatwall kinase/Mastl->PP2A/B55 pathway in preventing premature SAC silencing.

Pubmed ID: 27631493 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Jackson Laboratory (tool)

RRID:SCR_004633

An independent, nonprofit organization focused on mammalian genetics research to advance human health. Their mission is to discover the genetic basis for preventing, treating, and curing human disease, and to enable research for the global biomedical community. Jackson Laboratory breeds and manages colonies of mice as resources for other research institutions and laboratories, along with providing software and techniques. Jackson Lab also conducts genetic research and provides educational material for various educational levels.

View all literature mentions

Clontech (tool)

RRID:SCR_004423

An Antibody supplier

View all literature mentions

ProteomeXchange (tool)

RRID:SCR_004055

A data repository for proteomic data sets. The ProteomeExchange consortium, as a whole, aims to provide a coordinated submission of MS proteomics data to the main existing proteomics repositories, as well as to encourage optimal data dissemination. ProteomeXchange provides access to a number of public databases, and users can access and submit data sets to the consortium's PRIDE database and PASSEL/PeptideAtlas.

View all literature mentions

Program to Reduce Incontinence by Diet and Exercise (tool)

RRID:SCR_009018

Randomized controlled trial being conducted at two clinical centers in the United States to learn more about the effects of weight loss on urinary incontinence. About 330 overweight women aged 30 or older will participate and will be followed for 18 months. Efficacy of weight reduction as a treatment for urinary incontinence will be examined at 6 months following the intensive weight control program, and the sustained impact of the intervention will be examined at 18 months. To increase the maintenance of weight reduction and facilitate evaluation of the enduring impact of weight loss on urinary incontinence, they propose to study a motivation-based weight maintenance program. At the end of the intensive weight control program, women randomized to the weight loss program will be randomized to either a 12-month skill-based maintenance intervention or to a motivation-based maintenance intervention. The maintenance interventions maximize the potential for sustained weight loss and will allow them to determine if long-term weight reduction will produce continued improvement in urinary incontinence.

View all literature mentions

MaxQuant (tool)

RRID:SCR_014485

A quantitative proteomics software package for analyzing large-scale mass-spectrometric data sets. It is a set of algorithms that include peak detection and scoring of peptides, mass calibration, database searches for protein identification, protein quantification, and provides summary statistics.

View all literature mentions

HEK293-FT (tool)

RRID:CVCL_6911

Cell line HEK293-FT is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions

B6.129-Gt(ROSA)26Sortm1(cre/ERT2)Tyj/J (tool)

RRID:IMSR_JAX:008463

Mus musculus with name B6.129-Gt(ROSA)26Sortm1(cre/ERT2)Tyj/J from IMSR.

View all literature mentions

STOCK Tg(ACTA1-cre)79Jme/J (tool)

RRID:MGI:3619007

laboratory mouse with name STOCK Tg(ACTA1-cre)79Jme/J from MGI.

View all literature mentions

B6.Cg-Tg(ACTFLPe)9205Dym/J (tool)

RRID:IMSR_JAX:005703

Mus musculus with name B6.Cg-Tg(ACTFLPe)9205Dym/J from IMSR.

View all literature mentions

B6.Cg-Tg(CAG-cre/Esr1*)5Amc/J (tool)

RRID:IMSR_JAX:004682

Mus musculus with name B6.Cg-Tg(CAG-cre/Esr1*)5Amc/J from IMSR.

View all literature mentions