Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Diversity of Gut Microbiota Metabolic Pathways in 10 Pairs of Chinese Infant Twins.

PloS one | 2016

Early colonization of gut microbiota in human gut is a complex process. It remains unclear when gut microbiota colonization occurs and how it proceeds. In order to study gut microbiota composition in human early life, the present study recruited 10 healthy pairs of twins, including five monozygotic (MZ) and five dizygotic (DZ) twin pairs, whose age ranged from 0 to 6 years old. 20 fecal samples from these twins were processed by shotgun metagenomic sequencing, and their averaged data outputs were generated as 2G per sample. We used MEGAN5 to perform taxonomic and functional annotation of the metagenomic data, and systematically analyzed those 20 samples, including Jaccard index similarity, principle component, clustering, and correlation analyses. Our findings indicated that within our study group: 1) MZ-twins share more microbes than DZ twins or non-twin pairs, 2) gut microbiota distribution is relatively stable at metabolic pathways level, 3) age represents the strongest factor that can account for variation in gut microbiota, and 4) a clear metabolic pathway shift can be observed, which speculatively occurs around the age of 1 year old. This research will serve as a base for future studies of gut microbiota-related disease research.

Pubmed ID: 27583441 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


PlantCyc (tool)

RRID:SCR_002110

Multi species reference database. Comprehensive plant biochemical pathway database, containing curated information from literature and computational analyses about genes, enzymes, compounds, reactions, and pathways involved in primary and secondary metabolism.

View all literature mentions

KEGG (tool)

RRID:SCR_012773

Integrated database resource consisting of 16 main databases, broadly categorized into systems information, genomic information, and chemical information. In particular, gene catalogs in completely sequenced genomes are linked to higher-level systemic functions of cell, organism, and ecosystem. Analysis tools are also available. KEGG may be used as reference knowledge base for biological interpretation of large-scale datasets generated by sequencing and other high-throughput experimental technologies.

View all literature mentions

eggNOG (tool)

RRID:SCR_002456

A database of orthologous groups of genes. The orthologous groups are annotated with functional description lines (derived by identifying a common denominator for the genes based on their various annotations), with functional categories (i.e derived from the original COG/KOG categories). eggNOG's database currently counts 1.7 million orthologous groups in 3686 species, covering over 7.7 million proteins (built from 9.6 million proteins). (Jan 30, 2014)

View all literature mentions

MEGAN (tool)

RRID:SCR_011942

Software for analyzing metagenomes.

View all literature mentions