Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Admixture into and within sub-Saharan Africa.

eLife | 2016

Similarity between two individuals in the combination of genetic markers along their chromosomes indicates shared ancestry and can be used to identify historical connections between different population groups due to admixture. We use a genome-wide, haplotype-based, analysis to characterise the structure of genetic diversity and gene-flow in a collection of 48 sub-Saharan African groups. We show that coastal populations experienced an influx of Eurasian haplotypes over the last 7000 years, and that Eastern and Southern Niger-Congo speaking groups share ancestry with Central West Africans as a result of recent population expansions. In fact, most sub-Saharan populations share ancestry with groups from outside of their current geographic region as a result of gene-flow within the last 4000 years. Our in-depth analysis provides insight into haplotype sharing across different ethno-linguistic groups and the recent movement of alleles into new environments, both of which are relevant to studies of genetic epidemiology.

Pubmed ID: 27324836 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: Medical Research Council, United Kingdom
    Id: G0600718
  • Agency: Wellcome Trust, United Kingdom
    Id: 098051
  • Agency: Wellcome Trust, United Kingdom
    Id: 090532
  • Agency: Wellcome Trust, United Kingdom
    Id: 090770
  • Agency: Medical Research Council, United Kingdom
    Id: MC_UP_A900_1118
  • Agency: Medical Research Council, United Kingdom
    Id: MR/M006212/1
  • Agency: Wellcome Trust, United Kingdom
    Id: 097364
  • Agency: Wellcome Trust, United Kingdom
    Id: 077383
  • Agency: Wellcome Trust, United Kingdom
    Id: 084538

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


1000 Genomes Project and AWS (tool)

RRID:SCR_008801

A dataset containing the full genomic sequence of 1,700 individuals, freely available for research use. The 1000 Genomes Project is an international research effort coordinated by a consortium of 75 companies and organizations to establish the most detailed catalogue of human genetic variation. The project has grown to 200 terabytes of genomic data including DNA sequenced from more than 1,700 individuals that researchers can now access on AWS for use in disease research free of charge. The dataset containing the full genomic sequence of 1,700 individuals is now available to all via Amazon S3. The data can be found at: http://s3.amazonaws.com/1000genomes The 1000 Genomes Project aims to include the genomes of more than 2,662 individuals from 26 populations around the world, and the NIH will continue to add the remaining genome samples to the data collection this year. Public Data Sets on AWS provide a centralized repository of public data hosted on Amazon Simple Storage Service (Amazon S3). The data can be seamlessly accessed from AWS services such Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Elastic MapReduce (Amazon EMR), which provide organizations with the highly scalable compute resources needed to take advantage of these large data collections. AWS is storing the public data sets at no charge to the community. Researchers pay only for the additional AWS resources they need for further processing or analysis of the data. All 200 TB of the latest 1000 Genomes Project data is available in a publicly available Amazon S3 bucket. You can access the data via simple HTTP requests, or take advantage of the AWS SDKs in languages such as Ruby, Java, Python, .NET and PHP. Researchers can use the Amazon EC2 utility computing service to dive into this data without the usual capital investment required to work with data at this scale. AWS also provides a number of orchestration and automation services to help teams make their research available to others to remix and reuse. Making the data available via a bucket in Amazon S3 also means that customers can crunch the information using Hadoop via Amazon Elastic MapReduce, and take advantage of the growing collection of tools for running bioinformatics job flows, such as CloudBurst and Crossbow.

View all literature mentions

GenoSNP (tool)

RRID:SCR_010928

A genotyping algorithm for the Illumina Infinium SNP genotyping assay.

View all literature mentions

Eigensoft (tool)

RRID:SCR_004965

EIGENSOFT package combines functionality from our population genetics methods (Patterson et al. 2006) and our EIGENSTRAT stratification method (Price et al. 2006). The EIGENSTRAT method uses principal components analysis to explicitly model ancestry differences between cases and controls along continuous axes of variation; the resulting correction is specific to a candidate marker''s variation in frequency across ancestral populations, minimizing spurious associations while maximizing power to detect true associations. The EIGENSOFT package has a built-in plotting script and supports multiple file formats and quantitative phenotypes. Source code, documentation and executables for using EIGENSOFT 3.0 on a Linux platform can be downloaded. New features of EIGENSOFT 3.0 include supporting either 32-bit or 64-bit Linux machines, a utility to merge different data sets, a utility to identify related samples (accounting for population structure), and supporting multiple file formats for EIGENSTRAT stratification correction.

View all literature mentions