Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Improved Performance of Dynamic Measures of Insulin Response Over Surrogate Indices to Identify Genetic Contributors of Type 2 Diabetes: The GUARDIAN Consortium.

Diabetes | 2016

Type 2 diabetes (T2D) is a heterogeneous disorder with contributions from peripheral insulin resistance and β-cell dysfunction. For minimization of phenotypic heterogeneity, quantitative intermediate phenotypes characterizing basal glucose homeostasis (insulin resistance and HOMA of insulin resistance [HOMAIR] and of β-cell function [HOMAB]) have shown promise in relatively large samples. We investigated the utility of dynamic measures of glucose homeostasis (insulin sensitivity [SI] and acute insulin response [AIRg]) evaluating T2D-susceptibility variants (n = 57) in Hispanic Americans from the GUARDIAN Consortium (n = 2,560). Basal and dynamic measures were genetically correlated (HOMAB-AIRg: ρG = 0.28-0.73; HOMAIR-SI: ρG = -0.73 to -0.83) with increased heritability for the dynamic measure AIRg Significant association of variants with dynamic measures (P < 8.77 × 10(-4)) was observed. A pattern of superior performance of AIRg was observed for well-established loci including MTNR1B (P = 9.46 × 10(-12)), KCNQ1 (P = 1.35 × 10(-4)), and TCF7L2 (P = 5.10 × 10(-4)) with study-wise statistical significance. Notably, significant association of MTNR1B with AIRg (P < 1.38 × 10(-9)) was observed in a population one-fourteenth the size of the initial discovery cohort. These observations suggest that basal and dynamic measures provide different views and levels of sensitivity to discrete elements of glucose homeostasis. Although more costly to obtain, dynamic measures yield significant results that could be considered physiologically "closer" to causal pathways and provide insight into the discrete mechanisms of action.

Pubmed ID: 27207554 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIDDK NIH HHS, United States
    Id: R01 DK085175
  • Agency: NIEHS NIH HHS, United States
    Id: P30 ES007048
  • Agency: NIDDK NIH HHS, United States
    Id: R01 DK061628
  • Agency: NCATS NIH HHS, United States
    Id: UL1 TR000124
  • Agency: NHLBI NIH HHS, United States
    Id: R01 HL060944
  • Agency: NHLBI NIH HHS, United States
    Id: U01 HL047902
  • Agency: NIDDK NIH HHS, United States
    Id: P30 DK063491
  • Agency: NHLBI NIH HHS, United States
    Id: R01 HL061019
  • Agency: NHLBI NIH HHS, United States
    Id: R01 HL060919
  • Agency: NCATS NIH HHS, United States
    Id: UL1 TR001881

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


PEDCHECK (tool)

RRID:SCR_009322

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 16,20023. Software application for identifying all Mendelian inconsistencies in pedigree data. (entry from Genetic Analysis Software)

View all literature mentions

ADMIXTURE (tool)

RRID:SCR_001263

A software tool for maximum likelihood estimation of individual ancestries from multilocus SNP genotype datasets. It uses the same statistical model as STRUCTURE but calculates estimates much more rapidly using a fast numerical optimization algorithm. It uses a block relaxation approach to alternately update allele frequency and ancestry fraction parameters. Each block update is handled by solving a large number of independent convex optimization problems, which are tackled using a fast sequential quadratic programming algorithm. Convergence of the algorithm is accelerated using a novel quasi-Newton acceleration method.

View all literature mentions

METAL (tool)

RRID:SCR_002013

Software application designed to facilitate meta-analysis of large datasets (such as several whole genome scans) in a convenient, rapid and memory efficient manner. (entry from Genetic Analysis Software)

View all literature mentions