Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Tumor suppressor properties of the splicing regulatory factor RBM10.

RNA biology | 2016

RBM10 is an RNA binding protein and alternative splicing regulator frequently mutated in lung adenocarcinomas. Recent results indicate that RBM10 inhibits proliferation of lung cancer cells by promoting skipping of exon 9 of the gene NUMB, a frequent alternative splicing change in lung cancer generating a negative regulator of Notch signaling. Complementing these observations, we show that knock down of RBM10 in human cancer cells enhances growth of mouse tumor xenografts, confirming that RBM10 acts as a tumor suppressor, while knock down of an oncogenic mutant version of RBM10 reduces xenograft tumor growth. A RBM10 mutation found in lung cancer cells, V354E, disrupts RBM10-mediated regulation of NUMB alternative splicing, inducing the cell proliferation-promoting isoform. We now show that 2 natural RBM10 isoforms that differ by the presence or absence of V354 in the second RNA Recognition Motif (RRM2), display similar regulatory effects on NUMB alternative splicing, suggesting that V354E actively disrupts RBM10 activity. Structural modeling localizes V354 in the outside surface of one α-helix opposite to the RNA binding surface of RBM10, and we show that the mutation does not compromise binding of the RRM2 domain to NUMB RNA regulatory sequences. We further show that other RBM10 mutations found in lung adenocarcinomas also compromise regulation of NUMB exon 9. Collectively, our previous and current results reveal that RBM10 is a tumor suppressor that represses Notch signaling and cell proliferation through the regulation of NUMB alternative splicing.

Pubmed ID: 26853560 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


FoldX (tool)

RRID:SCR_008522

A computer algorithm that provides a fast and quantitative estimation of the importance of the interactions contributing to the stability of proteins and protein complexes. The predictive power of FOLDEF has been tested on a very large set of point mutants (1088 mutants) spanning most of the structural environments found in proteins . FoldX uses a full atomic description of the structure of the proteins. The different energy terms taken into account in FoldX have been weighted using empirical data obtained from protein engineering experiments.

View all literature mentions

HeLa (tool)

RRID:CVCL_0030

Cell line HeLa is a Cancer cell line with a species of origin Homo sapiens

View all literature mentions

HEK293 (tool)

RRID:CVCL_0045

Cell line HEK293 is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions

A-549 (tool)

RRID:CVCL_0023

Cell line A-549 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions