Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The Role of the Membrane in the Structure and Biophysical Robustness of the Dengue Virion Envelope.

Structure (London, England : 1993) | 2016

The dengue virion is surrounded by an envelope of membrane proteins surrounding a lipid bilayer. We have combined the cryoelectron microscopy structures of the membrane proteins (PDB: 3J27) with a lipid bilayer whose composition is based on lipidomics data for insect cell membranes, to obtain a near-atomic resolution computational model of the envelope of the dengue virion. A coarse-grained molecular dynamics simulation on the microsecond timescale enables analysis of key biophysical properties of the dengue outer envelope. Properties analyzed include area per lipid values (for a spherical virion with a mixed lipid composition), bilayer thickness, and lipid diffusion coefficients. Despite the absence of cholesterol from the lipid bilayer, the virion exhibits biophysical robustness (slow lipid diffusion alongside stable bilayer thickness, virion diameter, and shape) that matches the cholesterol-rich membrane of influenza A, with similarly anomalous diffusion of lipids. Biophysical robustness of the envelope may confer resilience to environmental perturbations.

Pubmed ID: 26833387 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: Wellcome Trust, United Kingdom

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


PyMOL (tool)

RRID:SCR_000305

A user-sponsored molecular visualization software system on an open-source foundation. The software has the capabilities to view, render, animate, export, present and develop three dimensional molecular structures.

View all literature mentions

IPython (tool)

RRID:SCR_001658

A web-based interactive computational environment where you can combine code execution, text, mathematics, plots and rich media into a single document. It offers a comprehensive library on top of which more sophisticated systems can be built. The project provides an enhanced interactive environment that includes support for data visualization and facilities for distributed and parallel computation.

View all literature mentions

SciPy (tool)

RRID:SCR_008058

A Python-based environment of open-source software for mathematics, science, and engineering. The core packages of SciPy include: NumPy, a base N-dimensional array package; SciPy Library, a fundamental library for scientific computing; and IPython, an enhanced interactive console.

View all literature mentions

MatPlotLib (tool)

RRID:SCR_008624

Python 2D plotting library which produces publication quality figures in variety of hardcopy formats and interactive environments across platforms. Used in python scripts, web application servers, and six graphical user interface toolkits. Used to generate plots, histograms, power spectra, bar charts, error charts, scatter plots.

View all literature mentions

GROMACS (tool)

RRID:SCR_014565

A software package created to perform molecular dynamics. It is primarily designed for biochemical molecules like proteins, lipids and nucleic acids that have many complicated bonded interactions, but it can also be used for research on non-biological systems, such as polymers.

View all literature mentions