Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Enhancing Motor Network Activity Using Real-Time Functional MRI Neurofeedback of Left Premotor Cortex.

Frontiers in behavioral neuroscience | 2015

Neurofeedback by functional magnetic resonance imaging (fMRI) is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC), important for motor recovery after brain injury. We investigated (i) whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI) task while receiving continuous fMRI-neurofeedback, and (ii) whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB) received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL) group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and MI, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke.

Pubmed ID: 26733832 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


WFU PickAtlas (tool)

RRID:SCR_007378

A software toolbox that provides a method for generating Region of Interest (ROI) masks based on the Talairach Daemon database. The atlases include Brodmann area, Lobar, Hemisphere, Anatomic Label (gyral anatomy), and Tissue type. The atlases have been extended to the vertex in MNI space, and corrected for the precentral gyrus anomaly. Additional atlases (including non-human atlases) can be added without difficulty.

View all literature mentions

SPM Anatomy Toolbox (tool)

RRID:SCR_013273

A MATLAB toolbox which uses three dimensional probabilistic cytoarchitechtonic maps to correlate microscopic, anatomic and functional data of the cerebral cortex. Correlating the activation foci identified in functional imaging studies of the human brain with structural (e.g., cytoarchitectonic) information on the activated areas is a major methodological challenge for neuroscience research. We here present a new approach to make use of three-dimensional probabilistic cytoarchitectonic maps, as obtained from the analysis of human post-mortem brains, for correlating microscopical, anatomical and functional imaging data of the cerebral cortex. We introduce a new, MATLAB based toolbox for the SPM2 software package which enables the integration of probabilistic cytoarchitectonic maps and results of functional imaging studies. The toolbox includes the functionality for the construction of summary maps combining probability of several cortical areas by finding the most probable assignment of each voxel to one of these areas. Its main feature is to provide several measures defining the degree of correspondence between architectonic areas and functional foci. The software, together with the presently available probability maps, is available as open source software to the neuroimaging community. This new toolbox provides an easy-to-use tool for the integrated analysis of functional and anatomical data in a common reference space.

View all literature mentions

STOP (tool)

RRID:SCR_005322

STOP is a multi-ontology enrichment analysis tool. It is intended to be used to help from hypothesis about large sets of genes or proteins. The annoations used for enrichment analysis are obtained automatically applying text descriptions of genes and proteins to the NCBO annotator. Text for genes is found using NCBI entrez gene, and text for proteins is found using UniProt. The text is then run though NCBO annotator with all the available ontologies. For more information about the NCBO annotator please visit: http://bioportal.bioontology.org/ The goal of National Center for Biomedical Ontology (NCBO) is to support biomedical researchers in their knowledge-intensive work, by providing online tools and a Web portal enabling them to access, review, and integrate disparate ontological resources in all aspects of biomedical investigation and clinical practice. A major focus of our work involves the use of biomedical ontologies to aid in the management and analysis of data derived from complex experiments. This work is an expansion of the work of Rob Tirrell and others on RANSUM This probject would not be possible without the contributions of Emily Howe, Uday Evani, Corey Powell, Mathew Fleisch, Tobias Wittkop, Ari Berman, Nigam Shah and Sean Mooney An account is required.

View all literature mentions